

**Drainage Report  
Residences at Morning Vista  
Portion of Section 24, T11S, R13E  
Pima County Tax Code 219-20-001C  
Oro Valley, Pima County, Arizona  
TOV Application 2102029**

Prepared for:  
Grenier Engineering, Inc.  
6300 E. El Dorado Plaza, Suite A120  
Tucson, Arizona 85715  
(520) 326-7082  
[e-mail: jmorse@grenier eng.com](mailto:jmorse@grenier eng.com)

Owner/Developer:  
Michael A. Sarabia  
1975 E. Skyline Dr. Suite 193  
Tucson, Arizona 85718  
(520) 297-8929  
[e-mail: msarabia@dswcomercial.com](mailto:msarabia@dswcomercial.com)

Prepared by:  
Arroyo Engineering, LLC  
2118 E. 10<sup>th</sup> Street  
Tucson, Arizona 85719  
(520) 882-0206  
[e-mail: lroberts@arroyoengineering.com](mailto:lroberts@arroyoengineering.com)



June 2023  
3<sup>rd</sup> Submittal



## TABLE OF CONTENTS

|                                                      |    |
|------------------------------------------------------|----|
| I. Introduction .....                                | 1  |
| II. Existing Conditions .....                        | 2  |
| A. Offsite Watersheds .....                          | 2  |
| B. Onsite Drainage .....                             | 2  |
| III. Proposed Conditions .....                       | 3  |
| IV. Special Conditions .....                         | 4  |
| A. Planned Area Development (PAD) Requirements ..... | 4  |
| V. Hydrologic and Hydraulic Analysis .....           | 6  |
| A. Hydrology .....                                   | 6  |
| 1. Existing Conditions .....                         | 6  |
| 2. Developed Conditions .....                        | 6  |
| A. Onsite Hydrology .....                            | 6  |
| B. Hydraulics .....                                  | 7  |
| 1. Proposed Drainage Structures .....                | 7  |
| A. Streets .....                                     | 7  |
| B. Scuppers .....                                    | 8  |
| C. Channels .....                                    | 8  |
| C. Stormwater Detention .....                        | 9  |
| 1. Proposed Outflows .....                           | 9  |
| 2. Basin Concept Design .....                        | 10 |
| 3. Basin Sedimentation .....                         | 11 |
| 4. Stormwater Harvesting .....                       | 11 |
| 5. Basin Drain Times .....                           | 11 |
| 6. Basin Maintenance Requirements .....              | 12 |
| D. Erosion Control .....                             | 13 |
| 1. Riprap Aprons .....                               | 13 |
| E. Stormwater Pollution Plan Requirements .....      | 13 |
| F. First Flush .....                                 | 13 |
| VI. Long-Term Maintenance Plan .....                 | 14 |
| A. Requirements .....                                | 14 |
| VII. Conclusion .....                                | 15 |
| VIII. References .....                               | 16 |

### Tables

|                                                              |    |
|--------------------------------------------------------------|----|
| Onsite Hydraulic Structures – Access Lane .....              | 7  |
| Onsite Hydraulic Structures – Scuppers .....                 | 8  |
| Onsite Hydraulic Structures – Channels .....                 | 8  |
| Proposed Outflows from Detention Basin .....                 | 9  |
| Proposed Outflows at East Property Corner .....              | 10 |
| Concept Design for Underground Storage Tanks .....           | 10 |
| Concept Design for Detention Basin .....                     | 11 |
| Concept Design <sup>1</sup> for Erosion Control Aprons ..... | 13 |

- Appendix A. Exhibits**
- Appendix B. Hydrology**
- Appendix C. Hydraulics**
- Appendix D. Scour and Erosion Mitigation**
- Appendix E. Detention Routing**
- Appendix F. Maintenance of Drainage Infrastructure**
- Appendix G. Oro Valley Checklist**
- Appendix H. Grenier Plans**

## I. INTRODUCTION

This Drainage Report has been prepared for Grenier Engineering, Inc., in conjunction with Improvement Plans for the proposed subdivision named “Residences at Morning Vista,” located within the Town of Oro Valley, Pima County, Arizona. The project is located within a portion of Section 24, Township 11 South, Range 13 East. The proposed project is located on parcel 219-20-001C. A Location Map and an aerial photograph are provided in Appendix A:

**Legal Description**  
CNTRL PTN E2 SW4 EXC RD 3.51 AC  
SEC 24-11-13

More specially, the property situates on the east corner of the intersection of Rancho Vistoso Blvd. and Morning Vista Drive. The project is bounded on the northeast and southeast by the Monterey Homes at Rancho Vista (Rancho Vistoso Neighborhood 5). The proposed project is a development of 18 single-family residential homes on 3.51 acres. The site is currently undeveloped, and is zoned Rancho Vistoso PD (High Density Residential).

This drainage analysis was prepared in accordance with the Oro Valley Drainage Criteria Manual (DCM) (**Draft 2020 Edition**), using additional technical criteria and computational procedures from the City of Tucson Drainage Standards Manual (DSM) (1989, 1998), the Pima County Design Standards for Stormwater Detention and Retention (November, 2015), and PC-Hydro 7.2 (Pima County Regional Flood Control District, 2019).

The purpose of the engineering analysis consists of (1) a hydrologic analysis to determine 100-year discharges; (2) detention basin routing for 2-year, 10-year, and 100-year discharges; and (3) a hydraulic analysis for the proposed onsite stormwater conveyance measures.

## II. EXISTING CONDITIONS

### A. Offsite Watersheds

The project site is located on a topographic high point at the east corner of the intersection of Rancho Vistoso Boulevard and Morning Vista Drive. No regulatory watercourses and corresponding floodplains are located on, or adjacent to, the project site. The property is located in Zone X as shown on FEMA Flood Insurance Rate Map (FIRM) Panel 04019C1080L (June 16, 2011),

Since the proposed project is located on a topographic high point, the project site does not receive any offsite flows, with the exception of nuisance runoff from a strip of land located between Rancho Vistoso Boulevard and the northwest property line (CP-OS1). Offsite stormwater runoff along the southwest property line drains southerly towards Morning Vista Drive. Offsite runoff along the southeast property line drains northeasterly along an existing block wall. Offsite runoff along the northeast property is either contained by an existing block wall or drains southeasterly to an existing flow path. Flow arrows are shown on the attached Existing Conditions Drainage Map (Appendix A).

### B. Onsite Drainage

The project site is located on a topographic high point. Onsite runoff generally flows easterly to outfall to an existing flow path at the eastern corner of the property. Concentration points, 100-year discharges, and flow arrows are shown on the Existing Conditions Drainage Map (Appendix A).

### III. PROPOSED CONDITIONS

The site layout will impact hydrologic characteristics such as impervious cover and onsite flow paths. As a result of the increased impervious cover, a detention basin will be constructed to detain the increased onsite flows, with basin outflows less than existing conditions.

Adjoining properties will not be protected from erosion due to potential lateral channel migration because they are outside of the project 100-year floodplains and erosion hazard setbacks.

Maintenance of all drainage improvements proposed as part of this development will be the responsibility of the HOA.

A Concept Drainage Plan map is included in Appendix A. The map shows the developed hydrology, proposed hydraulic structures, and detention basin.

## IV. SPECIAL CONDITIONS

### A. Planned Area Development (PAD) Requirements

The project site is located within the boundaries of the Rancho Vistoso Planned Area Development (PAD) District 5 (American Continental Corporation et al., June 1987). Drainage and flood control requirements are excerpted below. None of these requirements are applicable to the project site.

**Page 44:**

#### 5. DEVELOPMENT REQUIREMENTS:

##### a. Hydrologic Constraints:

- 1) In general, washes shall be left in their natural state. Limited encroachment and minor channel improvements may be approved in the subdivision platting process.
- 2) Washes with discharge greater than 500 cubic feet per second (CFS) shall be evaluated in the subdivision platting process for maintenance of natural conditions and preservation of riparian habitat.
- 3) No development shall occur within the regulatory floodway.
- 4) Prior to platting, an encroachment study for Big Wash shall be completed. The study shall address groundwater recharge, flood storage reduction, geomorphic channel changes, and natural changes due to encroachment.
- 5) All washes with a 100-year peak discharge which equals or exceeds 3,000 cubic feet per second must be dedicated to Pima County in fee simple. (Ord. 89-22)

##### c. Washes:

- 1) Washes greater than 1000 CFS shall be preserved as open space, except where encroachment or channelization has been approved in the subdivision platting process.
- 2) Drainage easements and dedicated rights-of-way shall be established in conjunction with washes preserved as open space.

**Page 55:**

**NEIGHBORHOOD #5**

1. This plan shall adhere to all Rancho Vistoso PAD General Policies.
2. The dwelling unit cap for Neighborhood #5 is 3,555.
3. The number of dwelling units permitted within a planning unit is calculated as RAC (residences per acre) multiplied by the developable acreage of the planning unit.
4. Floodplain Encroachment:
  - a. Proposed maximum floodplain encroachment is subject to review and approval in the subdivision platting process.
  - b. The permitted number of dwelling units of a planning unit shall be reduced or transferred in accordance with Policy #3, if developable acreage is reduced by the deletion of floodplain encroachment.
  - c. Encroachment along Big Wash shall not increase the flow velocity so as to adversely affect downstream property, as determined in the subdivision platting process.

**Page 56:**

11. Flood Control: All washes with a 100-year peak discharge which equals or exceeds 2,000 CFS must be dedicated to Pima County in fee simple. Other washes shall be evaluated in the subdivision platting process for dedication to Pima County.

## V. HYDROLOGIC AND HYDRAULIC ANALYSIS

### A. Hydrology

Hydrologic calculations were performed using the web-based PC-Hydro 7.2, in accordance with guidelines from the PC-Hydro User Guide (Pima County Regional Flood Control District, 2019; Arroyo Engineering, 2007). Hydrologic data sheets are included in Appendix B, which provide all of the input variables. Watersheds and concentration points are shown on the project maps in Appendix A.

Existing and developed onsite 2-year, 10-year, and 100-year discharges were calculated for use in performing the detention basin analysis. The developed 100-year discharges were calculated for use in determining concept designs for the scuppers and onsite channels.

#### 1. Existing Conditions

The project site is located on a topographic high point. Onsite runoff generally flows easterly to outfall to an existing flow path at the eastern corner of the property. Concentration points, 100-year discharges, and flow arrows are shown on the Existing Conditions Drainage Map (Appendix A).

| Existing Conditions Hydrology |           |                        |
|-------------------------------|-----------|------------------------|
| Concentration Point           | Area (ac) | Q <sub>100</sub> (cfs) |
| CP-E1                         | 1.81      | 10.1                   |
| CP-E2                         | 0.67      | 3.7                    |
| CP-E3                         | 0.36      | 2.0                    |
| CP-E4                         | 0.66      | 3.6                    |
| CP-OS1 (offsite)              | 0.22      | 1.2                    |

#### 2. Developed Conditions

### A. Onsite Hydrology

Developed onsite 2-year, 10-year, and 100-year discharges were calculated for use in performing the detention basin analysis. The 100-year discharges were calculated for use in determining concept designs for the scuppers and local channels.

A Concept Drainage Plan map is included in Appendix A. The map shows the developed watersheds, 100-year discharges, proposed hydraulic structures, and detention basin.

| Developed Conditions Hydrology |           |                        |
|--------------------------------|-----------|------------------------|
| Concentration Point            | Area (ac) | Q <sub>100</sub> (cfs) |
| S1                             | 2.66      | 23                     |
| S2                             | 0.08      | 0.7                    |
| S3                             | 0.08      | 0.7                    |
| S4                             | 0.11      | 0.6                    |
| S5                             | 0.09      | 0.5                    |
| B1                             | 0.07      | 0.4                    |
| B2                             | 0.5       | 2.8                    |
| B3                             | 0.08      | 0.4                    |

## B. Hydraulics

Project topographic mapping was provided by Grenier Engineering. From their survey base file:

**BASIS OF ELEVATION:2950.40' NAVD88  
Pima County OPUS Control Point R21  
1/2" Rebar North Edge of Concrete Walk North Side of Vistoso Highlands Drive**

### 1. Proposed Drainage Structures

All calculations, with referenced equations, are included in Appendix C as concept designs. Grenier's engineering designs have been shown on Improvement Plans (see Appendix H).

#### A. Streets

A 24-ft-wide access lane will convey onsite runoff from the west to the east. Hydraulic calculations were performed to establish the flow depth for the maximum downstream discharge and a design slope of 3%. The access lane cross section is based on 24 feet of pavement, a 2% cross slope, and 6-inch curbs. Manning's roughness coefficients were varied across the section, with a value of 0.013 used for concrete portions and a value of 0.016 used for asphalt portions.

| Onsite Hydraulic Structures – Access Lane |                        |                 |                  |
|-------------------------------------------|------------------------|-----------------|------------------|
| Conc. Pt.                                 | Q <sub>100</sub> (cfs) | Flow Depth (ft) | Street Slope (%) |
| S1                                        | 23                     | 0.41            | 3                |

### B. Scuppers

Hydraulic calculations were performed to determine the scupper sizes needed to convey the street runoff. The scupper widths were determined as a concept design minimum width at each location. All calculations, with referenced equations, are included in Appendix C as a concept design. Grenier's engineering design has been shown on the Improvement Plans (see Appendix H).

| Onsite Hydraulic Structures – Scuppers |                        |                              |                        |
|----------------------------------------|------------------------|------------------------------|------------------------|
| Scupper Conc. Pt.                      | Q <sub>100</sub> (cfs) | Depth (Y <sub>i</sub> ) (ft) | Minimum width (L) (ft) |
| S1                                     | 23                     | 0.5                          | 22                     |
| S2                                     | 0.7                    | 0.5                          | 0.7                    |
| S3                                     | 0.7                    | 0.5                          | 0.7                    |
| S3.1                                   | 0.7                    | 0.5                          | 0.7                    |
| S3.2                                   | 0.8                    | 0.5                          | 0.8                    |
| S3.3                                   | 0.8                    | 0.5                          | 0.8                    |
| S4                                     | 0.6                    | 0.5                          | 0.6                    |
| S5                                     | 0.5                    | 0.5                          | 0.5                    |

### C. Channels

Local channels will be used around the edges of the lots to convey runoff. The concept designs for the channels, as shown in the following table, are based on normal depth for the design slope shown on the Grenier Grading Plan. The design depth includes freeboard or uses collector channel standards (Simons, Li and Associates, 1998). All calculations are included in Appendix C as a concept design. Grenier's engineering design has been shown on their Improvement Plans (see Appendix H).

| Grenier Location | Conc. Point | Q <sub>100</sub> (cfs) | Flow Depth (ft) | Design Depth <sup>a</sup> (ft) | Velocity (ft/s) | Bottom width (ft) | Minimum       |           | Maximum side slope       | Lining         |
|------------------|-------------|------------------------|-----------------|--------------------------------|-----------------|-------------------|---------------|-----------|--------------------------|----------------|
|                  |             |                        |                 |                                |                 |                   | Topwidth (ft) | Slope (%) |                          |                |
| 8/C7.0           | B1          | 0.4                    | 0.38            | 0.45 <sup>a</sup>              | 1.0             | 0                 | 2.2           | 0.6       | Left 1:1<br>Right 4:1    | grouted riprap |
| 17/C7.2          | B1          | 0.4                    | 0.34            | 0.4 <sup>a</sup>               | 1.0             | 0                 | 3.1           | 0.6       | Left 2:1<br>Right 5.9:1  | riprap         |
| 16/C7.1          | B1          | 0.4                    | 0.10            | 0.19 <sup>b</sup>              | 1.8             | 2                 | 2.8           | 12        | 2H:1V                    | riprap         |
| Note 10/C4.0     | S4          | 0.6                    | 0.37            | 0.44 <sup>a</sup>              | 1.4             | 0                 | 2.6           | 0.8       | 3H:1V                    | earthen        |
| Note 10/C4.0     | B3          | 0.4                    | 0.3             | 0.36 <sup>a</sup>              | 1.5             | 0                 | 2.1           | 1.2       | 3H:1V                    | earthen        |
| 9/C7.0           | S5          | 0.5                    | 0.18            | 0.22 <sup>a</sup>              | 1.6             | 0                 | 4.2           | 2.6       | Left 12.5:1<br>Right 7:1 | earthen        |

<sup>a</sup> = freeboard included, <sup>b</sup> = collector channel, double flow depth for design depth

### C. Stormwater Detention

A stormwater detention basin is proposed in accordance with DCM DRAFT 2020 subsection 2.9 as follows:

- a) Routing calculations were performed with PC-Route (Pima County Regional Flood Control District, 2017).
- b) Hydrologic data sheets for the basin inflows are included in Appendix E. Inflow hydrographs are shown on the PC-Route summary sheets in Appendix E.
- c) Hydraulic calculations for the outlet structures are shown on the PC-Route summary sheets in Appendix E.
- d) Routing calculations are shown on the PC-Route summary sheets in Appendix E. Summary tables are provided below.
- e) The 100-year storage volume for the underground tanks has been increased by 50% to account for piggy-back storms.
- f) The proposed basin will receive runoff from the proposed lots and access lane. No measurable sediment inflow is expected. Consequently, a sediment measurement device is not warranted.
- g) The proposed basin will receive runoff from the proposed lots and access lane. No measurable sediment inflow is expected.
- h) Basin safety and access features have been addressed by Grenier Engineering on the Improvement Plans.
- i) The basin will drain in less than 48 hours (see Section V.C.5).

Compliance with additional items listed in DCM DRAFT 2020 subsection 12.7 is addressed as part of the Grenier Improvement Plans.

#### 1. Proposed Outflows

Preliminary detention routing calculations were initially completed to match or reduce outflows in comparison to the existing conditions flows for the 100-year, 10-year, and 2-year flow events. Since the proposed detention basin includes an underground storage tank, the preliminary volume for the tank was increased by 50% in accordance with DCM DRAFT 2020 subsection 12.7.4.h.

Using the additional volume for the underground tank, detention routing calculations were completed for the proposed detention basin. Results are summarized in the following table, with calculations in Appendix E.

| <b>Proposed Outflows from Detention Basin</b> |                        |                       |                      |
|-----------------------------------------------|------------------------|-----------------------|----------------------|
|                                               | Q <sub>100</sub> (cfs) | Q <sub>10</sub> (cfs) | Q <sub>2</sub> (cfs) |
| Preliminary Routing                           | 13.9                   | 5.8                   | 1.1                  |
| Final Routing with 50% additional tank volume | 12.3                   | 4.2                   | 0.6                  |

The detention routing calculations were completed to match or reduce outflows in comparison to the existing conditions flows for the 100-year, 10-year, and 2-year flow events at the eastern corner of the property. For existing conditions, flows at CP-E1, E2, and E3 combine as the outflow from the property. For developed conditions, the detention basin outflows combine with flows from B2 and B3. For developed conditions, hydrograph summations were compiled to determine the peak discharge for the 100-year, 10-year, and 2-year flow events.

| <b>Proposed Outflows at East Property Corner</b>           |                        |                       |                      |
|------------------------------------------------------------|------------------------|-----------------------|----------------------|
|                                                            | Q <sub>100</sub> (cfs) | Q <sub>10</sub> (cfs) | Q <sub>2</sub> (cfs) |
| Existing Conditions (CP-E1+E2+E3)                          | 15.8                   | 7.5                   | 2.5                  |
| Preliminary Routing plus B2+B3                             | 15.8                   | 6.5                   | 1.3                  |
| Final Routing (with 50% additional tank volume) plus B2+B3 | 14.0                   | 4.7                   | 0.9                  |

## 2. Basin Concept Design

An underground storage tank will be used to reduce the storage requirements for the proposed surface detention basin. For the preliminary design, the underground tank will collect the first 4162 cf of runoff via 3 circular grate inlets located in the bottom of the surface detention basin. A 3.5 inch orifice will drain the underground tank.

In accordance with DCM DRAFT 2020 subsection 12.7.4.h, an additional 50% was added to the 100-year volume of the underground storage tank.

| <b>Concept Design for Underground Storage Tanks</b> |                                   |
|-----------------------------------------------------|-----------------------------------|
| Preliminary storage volume (cf)                     | 4162                              |
| Volume with 50% additional (cf)                     | 6243                              |
| Max 100-yr inflow (cfs)                             | 21                                |
| Inflow structure<br>(calculations in Appendix E)    | 3 30"-diameter<br>circular grates |
| Outflow structure                                   | 3.5-in orifice                    |

The proposed concept design for the detention basin is described by the following table.

| Concept Design for Detention Basin                                                |                                |
|-----------------------------------------------------------------------------------|--------------------------------|
| Underground tank volume (cf) (100-yr plus 50%)                                    | 6243                           |
| 100-yr inflow (cfs)                                                               | 23.0                           |
| 100-yr outflow (cfs)                                                              | 12.3                           |
| 100-yr surface ponding depth (ft)                                                 | 2.8                            |
| Basin depth (ft)                                                                  | 3.0 plus (varies)              |
| Freeboard (ft)                                                                    | varies (see Grenier plans)     |
| Sediment volume (cf)                                                              | not applicable                 |
| Sediment depth (ft)                                                               | not applicable                 |
| 100-year required volume (cf) at d = 2.8 ft                                       | 12480                          |
| Total storage volume (cf) provided at depth = 3.0 ft<br>(tank plus surface basin) | 13034                          |
| Outflow structure (weir)                                                          | width = 1.3'<br>invert = 0.75' |
| Outflow structure (tank)                                                          | 3.5-in orifice                 |

### 3. Basin Sedimentation

The proposed basin will receive runoff from the proposed lots and access lane. No measurable sediment inflow is expected. Consequently, a sediment measurement device is not warranted.

### 4. Stormwater Harvesting

Stormwater harvesting will be provided by Grenier Engineering to the maximum extent practicable.

### 5. Basin Drain Times

The underground storage tanks will drain in 4.3 hours. Calculations are included in Appendix E.

## 6. Basin Maintenance Requirements

The detention basin will be maintained in accordance with subsection 12.9 of the DCM DRAFT 2020 and Section VI of this report.

### **12.9 Access and Maintenance**

Routine maintenance is required to ensure adequate performance for the life of proposed treatment systems. The drainage report shall address the following:

1. Physical and legal access shall be provided to all stormwater detention basins and appurtenant structures. This shall include permanent ramps for vehicular access into all basins, the width of which is to be determined by the types of vehicles specified in the maintenance plan, otherwise they shall be at least 14 feet wide. When needed, locking gates are to be provided on pedestrian barricades
2. Access is to be clearly identified on the grading and paving plans, final plats, and development plans.
3. A maintenance plan is required. Refer to DCM Chapter 15?

## D. Erosion Control

### 1. Riprap Aprons

Riprap aprons are proposed as erosion mitigation at the inlet and the outlets of the proposed detention basin. The concept designs for the aprons are based on Pima County geometric parameters (*Drainage and Channel Design Standards for Local Drainage*, June, 1984). Concept design parameters are provided in the following table. **Final designs by Grenier may vary depending on site grading constraints.**

| Concept Design <sup>1</sup> for Erosion Control Aprons |                                   |                                        |                                                      |                               |
|--------------------------------------------------------|-----------------------------------|----------------------------------------|------------------------------------------------------|-------------------------------|
| Location                                               | Structure size                    | Apron upstream width <sup>B</sup> (ft) | Length of Apron <sup>A</sup> (L <sub>SB</sub> ) (ft) | Riprap (d <sub>50</sub> )     |
| Basin inlet                                            | 22' (minimum) scupper             | 23                                     | 4                                                    | Grouted 6 inch                |
| Basin outlets                                          | 1 18-inch CMP with a 3.5" orifice | 4.5                                    | 8*0.253 (flow depth) = 2                             | Hand-placed or Grouted 6 inch |
|                                                        | 1.3-ft-wide weir d= 2.05'         | 1.3' + (2*2.05') = 5.4'                | use 5                                                | Hand-placed or Grouted 6 inch |

<sup>1</sup> Concept design may vary on Grenier Improvement Plans depending on site grading constraints

<sup>A</sup> L<sub>SB</sub> = (8 \* pipe diameter (D<sub>c</sub>) or flow depth (D),

<sup>B</sup> apron upstream width = structure spread + 1D or 1D<sub>c</sub> on each side

For hand-placed riprap, apron thickness = 2 \* d<sub>50</sub>

## E. Stormwater Pollution Plan Requirements

Stormwater Pollution Plan requirements will be addressed by Grenier Engineering in conjunction with the preparation of Improvement Plans for this project.

## F. First Flush

First-flush requirements are not required per DCN 11.7.2.

## VI. LONG-TERM MAINTENANCE PLAN

Section VI of this report serves as the Long-Term Maintenance Plan for the proposed development Residences at Morning Vista. The maintenance of drainage facilities will be conducted in accordance with Chapter 14 of the DCM DRAFT 2020, provided in Appendix F. The site-specific “Maintenance Plan and Drainage System Checklist,” for use by the Homeowner’s Association, is also provided in Appendix F.

### A. Requirements

In accordance with DCM DRAFT 2020 subsection 2.6.11, a Long-Term Maintenance Plan is required per the following TOV statement:

Maintenance is required in order for drainage facilities to function as originally designed and constructed to ensure the service life of the facility is maximized. Common maintenance issues associated with drainage facilities include growth of undesirable vegetation, debris accumulation, sedimentation, erosion, scour, soil piping, soil settlement and structural damage. This section of the Drainage Report shall provide guidance to the designer regarding development of maintenance elements that will assure structural stability, operability, and aesthetics.

#### TOV Maintenance Elements “a” through “f”

- a. There are no regulatory watercourses for inspection and maintenance.
- b. Constructed drainage structures, including channels, scuppers, and the detention facilities, shall be inspected and maintained. Remediation, if necessary, shall consist of restoring the function of the drainage infrastructure.
- c. Vegetative growth and sediment accumulation shall be removed from the detention basin as necessary to restore the design storage volume to the basin.
- d. Onsite drainage facilities are to be maintained by the Homeowner’s Association.
  - i. Drainage easements are shown on the Grenier Improvement Plans.
  - ii. Physical and legal access for maintenance is provided on the Grenier plans.
  - iii. The purpose of all drainage easements is for operation and maintenance of the stormwater facility. Maintenance requirements for landscaping are provided separately by others.
- e. The following two notes are provided as required.

*All drainage structures shall be inspected and a summary report prepared a minimum of once each year in accordance with the procedures in the approved Drainage Report. Copies of the annual inspection reports shall be made available to the Town upon request.*

*All drainage structures shall be inspected and a summary report prepared by an Arizona Registered Professional Civil Engineer a minimum of once every five years in accordance with the procedures presented in the approved Drainage Report. Copies of the 5-year-interval inspection reports shall be made available to the Town upon request. The report shall identify the maintenance needs for the next 5-year period, including the anticipated annual cost of maintenance and repair.*

- f. There are no cross-drainage culverts to be maintained.

## VII. CONCLUSION

This Drainage Report was prepared in accordance with the Town of Oro Valley Drainage Criteria Manual (Draft, 2020). Existing and developed onsite 2-year, 10-year, and 100-year discharges were calculated for use in performing detention basin routing. The developed 100-year discharges were calculated for use in determining concept designs for the scuppers and local channels.

A Concept Drainage Plan map is included in Appendix A. The map shows the developed watersheds, 100-year discharges, proposed hydraulic structures, and detention basin.

Section VI of this report serves as the Long-Term Maintenance Plan for the proposed development. The maintenance of drainage facilities will be conducted in accordance with Chapter 14 of the DCM DRAFT 2020, provided as Appendix F. The site-specific “Maintenance Plan and Drainage System Checklist,” for use by the Homeowner’s Association, is also provided in Appendix F.

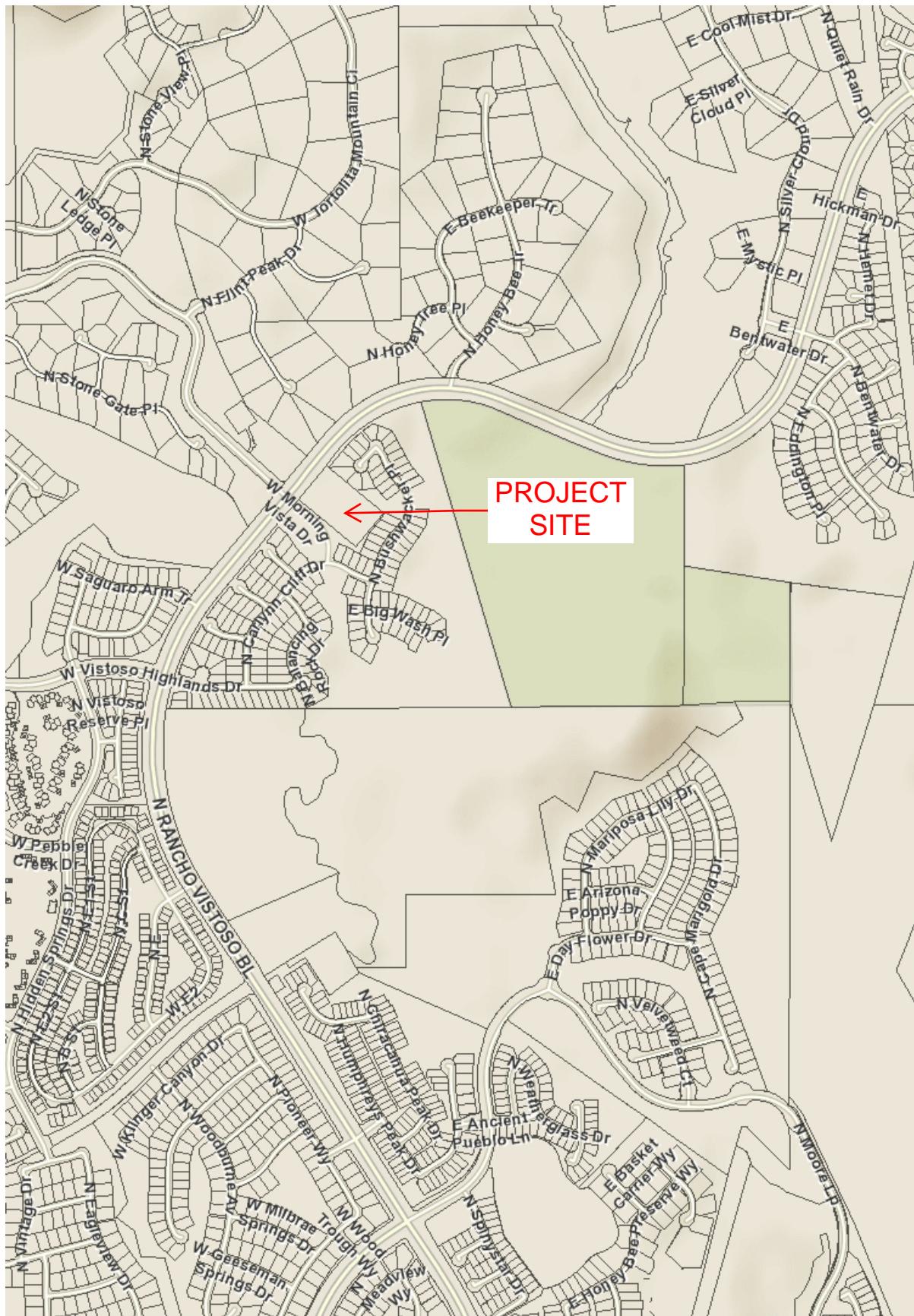
## VIII. REFERENCES

American Continental Corporation et al., *Rancho Vistoso Planned Area Development District 5*, June 1987.

Federal Emergency Management Agency, *Flood Insurance Study for Pima County and Incorporated Areas, Arizona*, June 16, 2011.

Town of Oro Valley, *Drainage Criteria Manual*, Draft, 2020.

Pima County Regional Flood Control District, *Design Standards for Stormwater Detention and Retention*, November, 2015.


Pima County Regional Flood Control District, *PC-Hydro User Guide*, 2019; (Pima County Regional Flood Control District, 2019; Arroyo Engineering, 2007).

Pima County Department of Transportation and Flood Control District, *Drainage and Channel Design Standards for Local Drainage*, June, 1984.

Simons, Li & Associates, Inc., *Standards Manual for Drainage Design and Floodplain Management in Tucson, Arizona*, 1989, updated 1998.

**Appendix A. Exhibits**

# Location Map



Notes:

8/10/2022

2,000.0

0

1,000.00

Feet



This map is static output from an internet mapping site and no warranty is expressed or implied as to the accuracy, reliability, currency or completeness of the data, and is for reference only

# Aerial Photo



## Legend

Parcels



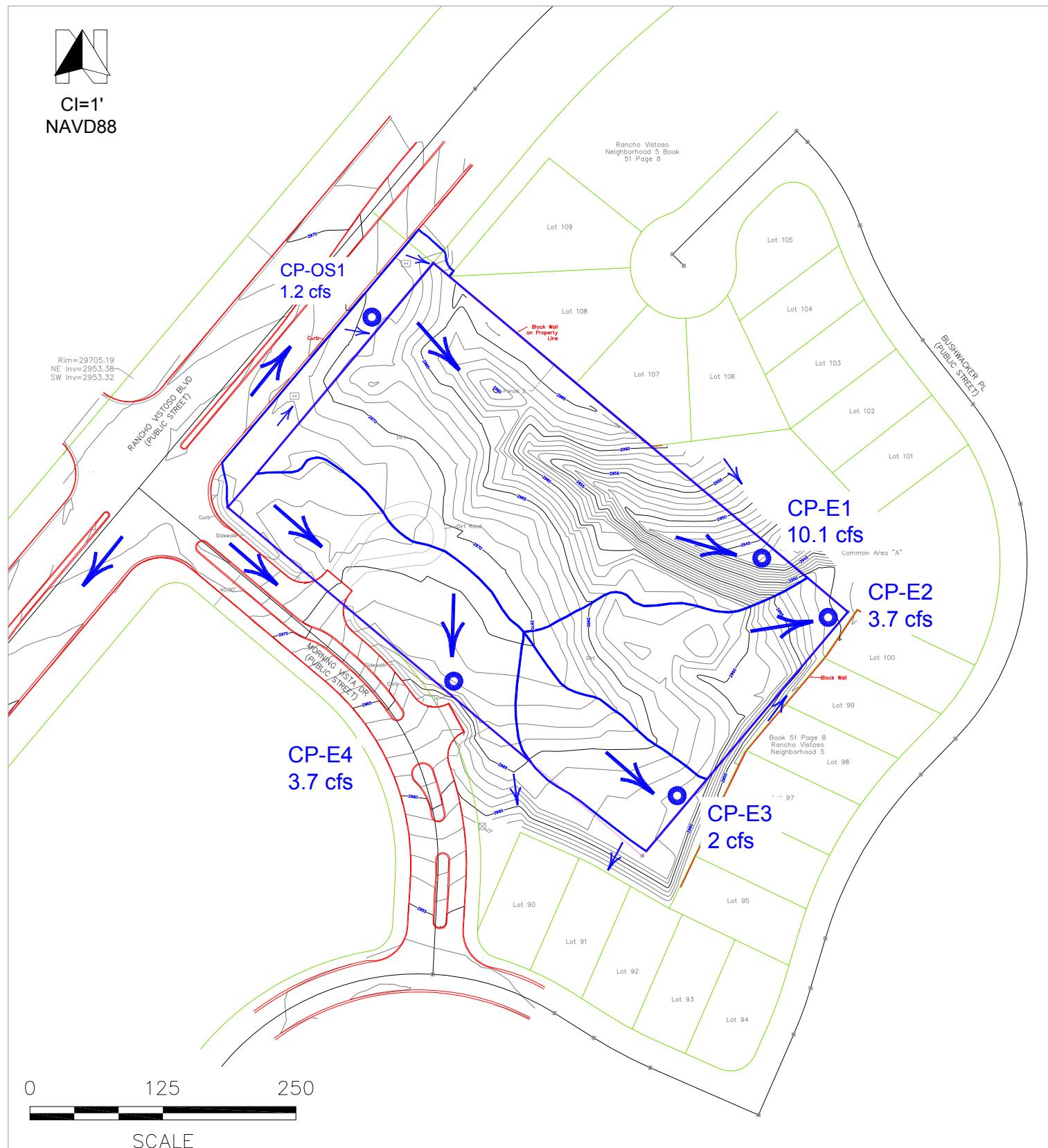
Notes:

8/10/2022

200.0

0

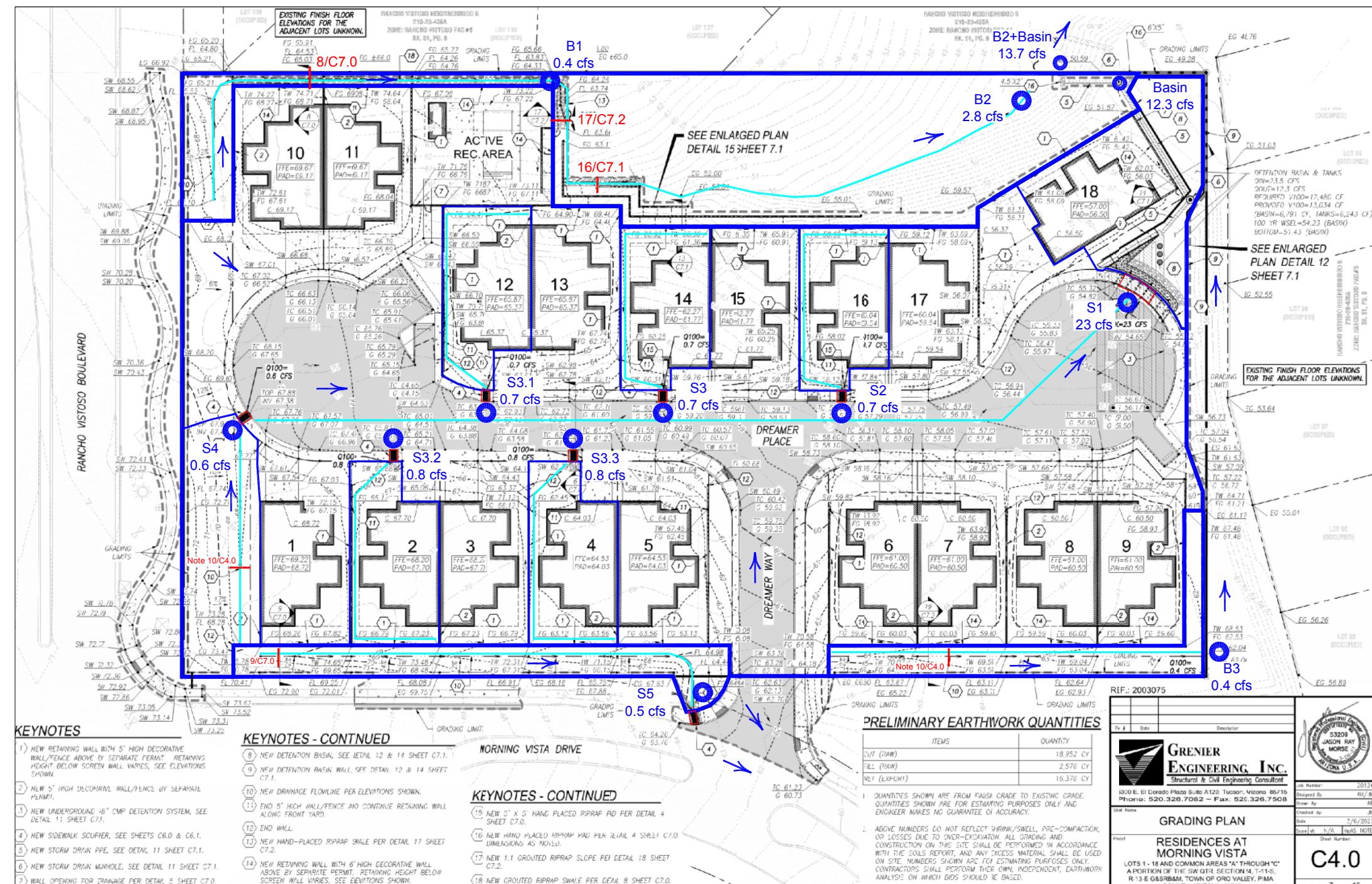
100.00


Feet



This map is static output from an internet mapping site and no warranty is expressed or implied as to the accuracy, reliability, currency or completeness of the data, and is for reference only



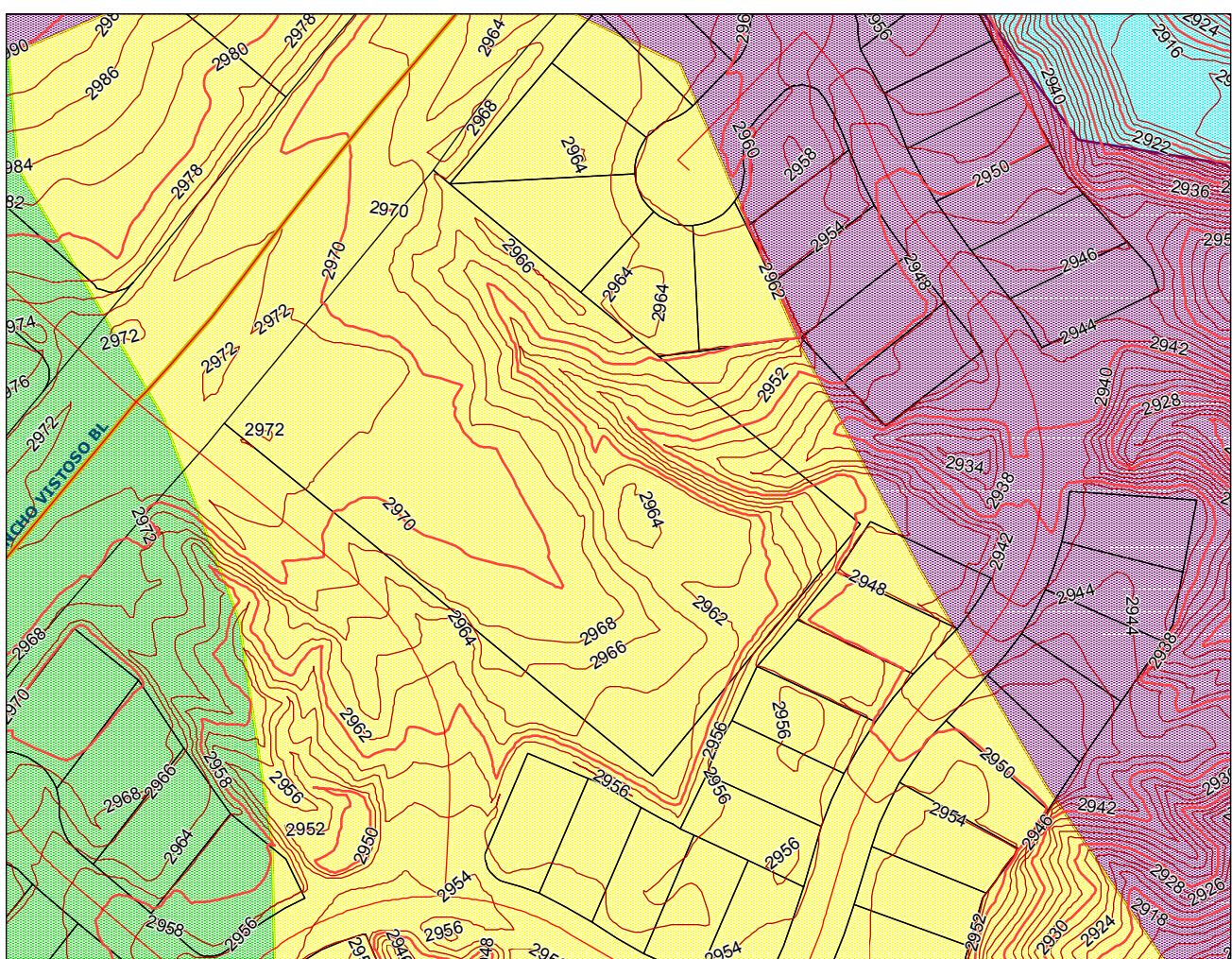
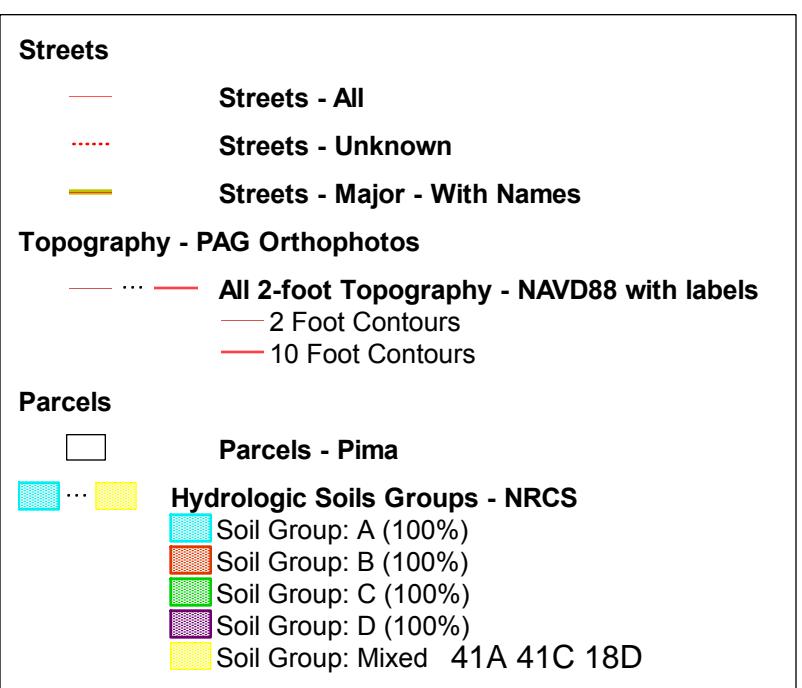

Cl=1'  
NAVD88



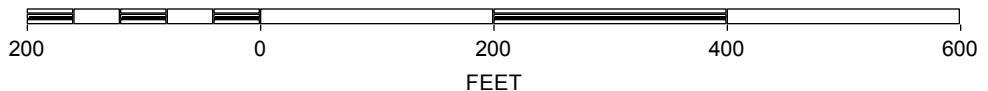
#### LEGEND

- Project site
- Watershed boundaries
- CP-E1 10.1 cfs
- Conc. pt. and Q100
- Flow arrow

Existing Conditions  
Drainage Map


C.I. = 1'  
DATUM = NAVD88


0 60 120  
FEET

**LEGEND**

- Flow arrows
- Watershed
- PC-Hydro Lc
- S2 0.7 cfs
- Developed 100-yr discharge (cfs)
- 16/C7.1 Hydraulic cross section, with Grenier ID
- Proposed scupper



SCALE 1 : 2,000



## Appendix B. Hydrology



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                             |                |                       |
|----------------------|-----------------------------|----------------|-----------------------|
| Client:              | Grenier Engineering         | Prepared by:   | lkr                   |
| Project Name:        | Residences at Morning Vista | Date:          | 01/09/2023            |
| Concentration Point: | CP-E1                       | Job #          |                       |
| Watershed Area:      | 1.81 Acres                  | Watershed Type | Undeveloped-Foothills |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 25          | 482         | 0.0519     | 0.06              |

|                                  |              |      |                     |        |
|----------------------------------|--------------|------|---------------------|--------|
| Length of Watercourse (Lc):      | 482          | feet | Mean Slope:         | 0.0519 |
| Length to Cen. of Gravity (Lca): | 241          | feet | Weighted Basin Fac: | 0.06   |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30     |

**RETURN PERIOD: 2-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |        |        |        |                   |                      |
|--------------------|---------------------------|--------|--------|--------|-------------------|----------------------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ |        |        |        | Latitude: 32.4567 | Longitude: -110.9716 |
| Duration:          | 5-min                     | 10-min | 15-min | 30-min | 1-hr              | 2-hr                 |
| Point Values (in): | 0.37                      | 0.56   | 0.69   | 0.93   | 1.15              | 1.3                  |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.149            |
| C         | 41      | 87.3         | 0.277            |
| D         | 18      | 90.3         | 0.378            |
| Imp.      | 0       | 99           | 0.902            |

|                              |                |
|------------------------------|----------------|
| Weighted Runoff Coef. (Cw):  | 0.24           |
| Time of Concentration:       | 8.2 min        |
| Rainfall Intensity (i) @ Tc: | 3.59 in/hr     |
| Runoff Supply Rate (q) @ Tc: | 0.87 in/hr     |
| <b>PEAK DISCHARGE:</b>       | <u>1.6 cfs</u> |



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                             |                |                       |
|----------------------|-----------------------------|----------------|-----------------------|
| Client:              | Grenier Engineering         | Prepared by:   | lkr                   |
| Project Name:        | Residences at Morning Vista | Date:          | 01/09/2023            |
| Concentration Point: | CP-E1                       | Job #          |                       |
| Watershed Area:      | 1.81 Acres                  | Watershed Type | Undeveloped-Foothills |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 25          | 482         | 0.0519     | 0.06              |

|                                  |              |      |                     |        |
|----------------------------------|--------------|------|---------------------|--------|
| Length of Watercourse (Lc):      | 482          | feet | Mean Slope:         | 0.0519 |
| Length to Cen. of Gravity (Lca): | 241          | feet | Weighted Basin Fac: | 0.06   |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30     |

**RETURN PERIOD: 10-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |        |        |        |                   |                      |
|--------------------|---------------------------|--------|--------|--------|-------------------|----------------------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ |        |        |        | Latitude: 32.4567 | Longitude: -110.9716 |
| Duration:          | 5-min                     | 10-min | 15-min | 30-min | 1-hr              | 2-hr                 |
| Point Values (in): | 0.57                      | 0.87   | 1.08   | 1.45   | 1.79              | 2                    |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.285            |
| C         | 41      | 87.3         | 0.425            |
| D         | 18      | 90.3         | 0.523            |
| Imp.      | 0       | 99           | 0.935            |

|                              |                |
|------------------------------|----------------|
| Weighted Runoff Coef. (Cw):  | 0.39           |
| Time of Concentration:       | 5.3 min        |
| Rainfall Intensity (i) @ Tc: | 6.63 in/hr     |
| Runoff Supply Rate (q) @ Tc: | 2.55 in/hr     |
| <b>PEAK DISCHARGE:</b>       | <u>4.7 cfs</u> |



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                             |                |                       |
|----------------------|-----------------------------|----------------|-----------------------|
| Client:              | Grenier Engineering         | Prepared by:   | lkr                   |
| Project Name:        | Residences at Morning Vista | Date:          | 01/09/2023            |
| Concentration Point: | CP-E1                       | Job #          |                       |
| Watershed Area:      | 1.81 Acres                  | Watershed Type | Undeveloped-Foothills |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 25          | 482         | 0.0519     | 0.06              |

|                                  |              |      |                     |        |
|----------------------------------|--------------|------|---------------------|--------|
| Length of Watercourse (Lc):      | 482          | feet | Mean Slope:         | 0.0519 |
| Length to Cen. of Gravity (Lca): | 241          | feet | Weighted Basin Fac: | 0.06   |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30     |

**RETURN PERIOD: 100-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |        |        |        |                   |                      |
|--------------------|---------------------------|--------|--------|--------|-------------------|----------------------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ |        |        |        | Latitude: 32.4567 | Longitude: -110.9716 |
| Duration:          | 5-min                     | 10-min | 15-min | 30-min | 1-hr              | 2-hr                 |
| Point Values (in): | 0.88                      | 1.34   | 1.66   | 2.24   | 2.77              | 3.09                 |
|                    | 3.25                      | 3.58   | 3.91   | 4.65   |                   |                      |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.431            |
| C         | 41      | 87.3         | 0.564            |
| D         | 18      | 90.3         | 0.649            |
| Imp.      | 0       | 99           | 0.958            |

|                              |                 |
|------------------------------|-----------------|
| Weighted Runoff Coef. (Cw):  | 0.52            |
| Time of Concentration:       | 5 min           |
| Rainfall Intensity (i) @ Tc: | 10.56 in/hr     |
| Runoff Supply Rate (q) @ Tc: | 5.54 in/hr      |
| <b>PEAK DISCHARGE:</b>       | <u>10.1 cfs</u> |



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                             |                |                       |
|----------------------|-----------------------------|----------------|-----------------------|
| Client:              | Grenier Engineering         | Prepared by:   | lkr                   |
| Project Name:        | Residences at Morning Vista | Date:          | 01/09/2023            |
| Concentration Point: | CP-E2                       | Job #          |                       |
| Watershed Area:      | 0.67 Acres                  | Watershed Type | Undeveloped-Foothills |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 20          | 326         | 0.0613     | 0.065             |

|                                  |              |      |                     |        |
|----------------------------------|--------------|------|---------------------|--------|
| Length of Watercourse (Lc):      | 326          | feet | Mean Slope:         | 0.0613 |
| Length to Cen. of Gravity (Lca): | 163          | feet | Weighted Basin Fac: | 0.065  |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30     |

**RETURN PERIOD: 2-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |        |        |        |                   |                      |
|--------------------|---------------------------|--------|--------|--------|-------------------|----------------------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ |        |        |        | Latitude: 32.4567 | Longitude: -110.9716 |
| Duration:          | 5-min                     | 10-min | 15-min | 30-min | 1-hr              | 2-hr                 |
| Point Values (in): | 0.37                      | 0.56   | 0.69   | 0.93   | 1.15              | 1.3                  |
|                    |                           |        |        |        | 3-hr              | 6-hr                 |
|                    |                           |        |        |        | 1.37              | 1.57                 |
|                    |                           |        |        |        | 12-hr             | 24-hr                |
|                    |                           |        |        |        |                   | 2.08                 |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.149            |
| C         | 41      | 87.3         | 0.277            |
| D         | 18      | 90.3         | 0.378            |
| Imp.      | 0       | 99           | 0.902            |

|                              |                |
|------------------------------|----------------|
| Weighted Runoff Coef. (Cw):  | 0.24           |
| Time of Concentration:       | 6.3 min        |
| Rainfall Intensity (i) @ Tc: | 3.99 in/hr     |
| Runoff Supply Rate (q) @ Tc: | 0.97 in/hr     |
| <b>PEAK DISCHARGE:</b>       | <u>0.7 cfs</u> |



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                             |                |                       |
|----------------------|-----------------------------|----------------|-----------------------|
| Client:              | Grenier Engineering         | Prepared by:   | lkr                   |
| Project Name:        | Residences at Morning Vista | Date:          | 01/09/2023            |
| Concentration Point: | CP-E2                       | Job #          |                       |
| Watershed Area:      | 0.67 Acres                  | Watershed Type | Undeveloped-Foothills |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 20          | 326         | 0.0613     | 0.065             |

|                                  |              |      |                     |        |
|----------------------------------|--------------|------|---------------------|--------|
| Length of Watercourse (Lc):      | 326          | feet | Mean Slope:         | 0.0613 |
| Length to Cen. of Gravity (Lca): | 163          | feet | Weighted Basin Fac: | 0.065  |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30     |

**RETURN PERIOD: 10-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |        |        |        |                   |                      |
|--------------------|---------------------------|--------|--------|--------|-------------------|----------------------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ |        |        |        | Latitude: 32.4567 | Longitude: -110.9716 |
| Duration:          | 5-min                     | 10-min | 15-min | 30-min | 1-hr              | 2-hr                 |
| Point Values (in): | 0.57                      | 0.87   | 1.08   | 1.45   | 1.79              | 2                    |
|                    |                           |        |        |        | 3-hr              | 6-hr                 |
|                    |                           |        |        |        | 2.08              | 2.32                 |
|                    |                           |        |        |        | 2.59              | 3.04                 |
|                    |                           |        |        |        | 12-hr             | 24-hr                |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.285            |
| C         | 41      | 87.3         | 0.425            |
| D         | 18      | 90.3         | 0.523            |
| Imp.      | 0       | 99           | 0.935            |

|                              |                |
|------------------------------|----------------|
| Weighted Runoff Coef. (Cw):  | 0.39           |
| Time of Concentration:       | 5 min          |
| Rainfall Intensity (i) @ Tc: | 6.84 in/hr     |
| Runoff Supply Rate (q) @ Tc: | 2.64 in/hr     |
| <b>PEAK DISCHARGE:</b>       | <u>1.8 cfs</u> |



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                             |                |                       |
|----------------------|-----------------------------|----------------|-----------------------|
| Client:              | Grenier Engineering         | Prepared by:   | lkr                   |
| Project Name:        | Residences at Morning Vista | Date:          | 01/09/2023            |
| Concentration Point: | CP-E2                       | Job #          |                       |
| Watershed Area:      | 0.67 Acres                  | Watershed Type | Undeveloped-Foothills |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 20          | 326         | 0.0613     | 0.065             |

|                                  |              |      |                     |        |
|----------------------------------|--------------|------|---------------------|--------|
| Length of Watercourse (Lc):      | 326          | feet | Mean Slope:         | 0.0613 |
| Length to Cen. of Gravity (Lca): | 163          | feet | Weighted Basin Fac: | 0.065  |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30     |

**RETURN PERIOD: 100-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |        |        |        |                   |                      |
|--------------------|---------------------------|--------|--------|--------|-------------------|----------------------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ |        |        |        | Latitude: 32.4567 | Longitude: -110.9716 |
| Duration:          | 5-min                     | 10-min | 15-min | 30-min | 1-hr              | 2-hr                 |
| Point Values (in): | 0.88                      | 1.34   | 1.66   | 2.24   | 2.77              | 3.09                 |
|                    | 3.25                      | 3.58   | 3.91   | 4.65   | 6-hr              | 12-hr                |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.431            |
| C         | 41      | 87.3         | 0.564            |
| D         | 18      | 90.3         | 0.649            |
| Imp.      | 0       | 99           | 0.958            |

|                              |             |
|------------------------------|-------------|
| Weighted Runoff Coef. (Cw):  | 0.52        |
| Time of Concentration:       | 5 min       |
| Rainfall Intensity (i) @ Tc: | 10.56 in/hr |
| Runoff Supply Rate (q) @ Tc: | 5.54 in/hr  |
| <b>PEAK DISCHARGE:</b>       | 3.7 cfs     |



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                              |                |                       |
|----------------------|------------------------------|----------------|-----------------------|
| Client:              | Grenier Engineering          | Prepared by:   | lkr                   |
| Project Name:        | Residences at Morning Vista. | Date:          | 01/09/2023            |
| Concentration Point: | CP-E3                        | Job #          |                       |
| Watershed Area:      | 0.36 Acres                   | Watershed Type | Undeveloped-Foothills |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 9           | 246         | 0.0366     | 0.04              |

|                                  |              |      |                     |        |
|----------------------------------|--------------|------|---------------------|--------|
| Length of Watercourse (Lc):      | 246          | feet | Mean Slope:         | 0.0366 |
| Length to Cen. of Gravity (Lca): | 123          | feet | Weighted Basin Fac: | 0.04   |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30     |

**RETURN PERIOD: 2-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |        |        |        |                   |                      |
|--------------------|---------------------------|--------|--------|--------|-------------------|----------------------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ |        |        |        | Latitude: 32.4567 | Longitude: -110.9716 |
| Duration:          | 5-min                     | 10-min | 15-min | 30-min | 1-hr              | 2-hr                 |
| Point Values (in): | 0.37                      | 0.56   | 0.69   | 0.93   | 1.15              | 1.3                  |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.149            |
| C         | 41      | 87.3         | 0.277            |
| D         | 18      | 90.3         | 0.378            |
| Imp.      | 0       | 99           | 0.902            |

|                              |            |
|------------------------------|------------|
| Weighted Runoff Coef. (Cw):  | 0.24       |
| Time of Concentration:       | 5 min      |
| Rainfall Intensity (i) @ Tc: | 4.44 in/hr |
| Runoff Supply Rate (q) @ Tc: | 1.08 in/hr |
| <b>PEAK DISCHARGE:</b>       | 0.4 cfs    |



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                              |                |                       |
|----------------------|------------------------------|----------------|-----------------------|
| Client:              | Grenier Engineering          | Prepared by:   | lkr                   |
| Project Name:        | Residences at Morning Vista. | Date:          | 01/09/2023            |
| Concentration Point: | CP-E3                        | Job #          |                       |
| Watershed Area:      | 0.36 Acres                   | Watershed Type | Undeveloped-Foothills |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 9           | 246         | 0.0366     | 0.04              |

|                                  |              |      |                     |        |
|----------------------------------|--------------|------|---------------------|--------|
| Length of Watercourse (Lc):      | 246          | feet | Mean Slope:         | 0.0366 |
| Length to Cen. of Gravity (Lca): | 123          | feet | Weighted Basin Fac: | 0.04   |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30     |

**RETURN PERIOD: 10-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |        |        |        |                   |                      |
|--------------------|---------------------------|--------|--------|--------|-------------------|----------------------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ |        |        |        | Latitude: 32.4567 | Longitude: -110.9716 |
| Duration:          | 5-min                     | 10-min | 15-min | 30-min | 1-hr              | 2-hr                 |
| Point Values (in): | 0.57                      | 0.87   | 1.08   | 1.45   | 1.79              | 2                    |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.285            |
| C         | 41      | 87.3         | 0.425            |
| D         | 18      | 90.3         | 0.523            |
| Imp.      | 0       | 99           | 0.935            |

|                              |              |
|------------------------------|--------------|
| Weighted Runoff Coef. (Cw):  | 0.39         |
| Time of Concentration:       | 5 min        |
| Rainfall Intensity (i) @ Tc: | 6.84 in/hr   |
| Runoff Supply Rate (q) @ Tc: | 2.64 in/hr   |
| <b>PEAK DISCHARGE:</b>       | <u>1</u> cfs |



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                              |                |                       |
|----------------------|------------------------------|----------------|-----------------------|
| Client:              | Grenier Engineering          | Prepared by:   | lkr                   |
| Project Name:        | Residences at Morning Vista. | Date:          | 01/09/2023            |
| Concentration Point: | CP-E3                        | Job #          |                       |
| Watershed Area:      | 0.36 Acres                   | Watershed Type | Undeveloped-Foothills |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 9           | 246         | 0.0366     | 0.04              |

|                                  |              |      |                     |        |
|----------------------------------|--------------|------|---------------------|--------|
| Length of Watercourse (Lc):      | 246          | feet | Mean Slope:         | 0.0366 |
| Length to Cen. of Gravity (Lca): | 123          | feet | Weighted Basin Fac: | 0.04   |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30     |

**RETURN PERIOD: 100-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |        |        |        |                   |                      |
|--------------------|---------------------------|--------|--------|--------|-------------------|----------------------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ |        |        |        | Latitude: 32.4567 | Longitude: -110.9716 |
| Duration:          | 5-min                     | 10-min | 15-min | 30-min | 1-hr              | 2-hr                 |
| Point Values (in): | 0.88                      | 1.34   | 1.66   | 2.24   | 2.77              | 3.09                 |
|                    | 3.25                      | 3.58   | 3.91   | 4.65   | 6-hr              | 12-hr                |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.431            |
| C         | 41      | 87.3         | 0.564            |
| D         | 18      | 90.3         | 0.649            |
| Imp.      | 0       | 99           | 0.958            |

|                              |              |
|------------------------------|--------------|
| Weighted Runoff Coef. (Cw):  | 0.52         |
| Time of Concentration:       | 5 min        |
| Rainfall Intensity (i) @ Tc: | 10.56 in/hr  |
| Runoff Supply Rate (q) @ Tc: | 5.54 in/hr   |
| <b>PEAK DISCHARGE:</b>       | <u>2 cfs</u> |



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                             |                |                       |
|----------------------|-----------------------------|----------------|-----------------------|
| Client:              | Grenier Engineering         | Prepared by:   | lkr                   |
| Project Name:        | Residences at Morning Vista | Date:          | 01/09/2023            |
| Concentration Point: | CP-E4                       | Job #          |                       |
| Watershed Area:      | 0.66 Acres                  | Watershed Type | Undeveloped-Foothills |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 7           | 278         | 0.0252     | 0.04              |

|                                  |              |      |                     |        |
|----------------------------------|--------------|------|---------------------|--------|
| Length of Watercourse (Lc):      | 278          | feet | Mean Slope:         | 0.0252 |
| Length to Cen. of Gravity (Lca): | 139          | feet | Weighted Basin Fac: | 0.04   |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30     |

**RETURN PERIOD: 100-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |        |        |        |                   |                      |
|--------------------|---------------------------|--------|--------|--------|-------------------|----------------------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ |        |        |        | Latitude: 32.4567 | Longitude: -110.9716 |
| Duration:          | 5-min                     | 10-min | 15-min | 30-min | 1-hr              | 2-hr                 |
| Point Values (in): | 0.88                      | 1.34   | 1.66   | 2.24   | 2.77              | 3.09                 |
|                    | 3.25                      | 3.58   | 3.91   | 4.65   |                   |                      |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.431            |
| C         | 41      | 87.3         | 0.564            |
| D         | 18      | 90.3         | 0.649            |
| Imp.      | 0       | 99           | 0.958            |

|                              |                |
|------------------------------|----------------|
| Weighted Runoff Coef. (Cw):  | 0.52           |
| Time of Concentration:       | 5 min          |
| Rainfall Intensity (i) @ Tc: | 10.56 in/hr    |
| Runoff Supply Rate (q) @ Tc: | 5.54 in/hr     |
| <b>PEAK DISCHARGE:</b>       | <u>3.7 cfs</u> |



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                             |                |                       |
|----------------------|-----------------------------|----------------|-----------------------|
| Client:              | Grenier Engineering         | Prepared by:   | lkr                   |
| Project Name:        | Residences at Morning Vista | Date:          | 1/9/2023              |
| Concentration Point: | OS-1                        | Job #          |                       |
| Watershed Area:      | 0.22 Acres                  | Watershed Type | Undeveloped-Foothills |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 7           | 296         | 0.0236     | 0.04              |

|                                  |              |      |                     |        |
|----------------------------------|--------------|------|---------------------|--------|
| Length of Watercourse (Lc):      | 296          | feet | Mean Slope:         | 0.0236 |
| Length to Cen. of Gravity (Lca): | 148          | feet | Weighted Basin Fac: | 0.04   |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30     |

**RETURN PERIOD: 100-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |        |        |        |                   |                      |
|--------------------|---------------------------|--------|--------|--------|-------------------|----------------------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ |        |        |        | Latitude: 32.4567 | Longitude: -110.9716 |
| Duration:          | 5-min                     | 10-min | 15-min | 30-min | 1-hr              | 2-hr                 |
| Point Values (in): | 0.88                      | 1.34   | 1.66   | 2.24   | 2.77              | 3.09                 |
|                    | 3.25                      | 3.58   | 3.91   | 4.65   | 6-hr              | 12-hr                |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.431            |
| C         | 41      | 87.3         | 0.564            |
| D         | 18      | 90.3         | 0.649            |
| Imp.      | 0       | 99           | 0.958            |

|                              |             |
|------------------------------|-------------|
| Weighted Runoff Coef. (Cw):  | 0.52        |
| Time of Concentration:       | 5 min       |
| Rainfall Intensity (i) @ Tc: | 10.56 in/hr |
| Runoff Supply Rate (q) @ Tc: | 5.54 in/hr  |
| <b>PEAK DISCHARGE:</b>       | 1.2 cfs     |



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

Client: Grenier Engineering Prepared by: lkr  
Project Name: Residences at Morning Vista Date: 01/09/2023  
Concentration Point: S1 Job #: \_\_\_\_\_  
Watershed Area: 2.66 Acres Watershed Type High Density Urbanized

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 0.9         | 108         | 0.0083     | 0.045             |
| 2         | 12.4        | 462         | 0.0268     | 0.04              |

Length of Watercourse (Lc): 570 feet Mean Slope: 0.0203  
Length to Cen. of Gravity (Lca): 285 feet Weighted Basin Fac: 0.041  
Veg. Cover Type(s): Desert Brush Veg. Cover Density: 30

**RETURN PERIOD: 100-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

Rainfall Depths: NOAA Atlas 14 (90% UCL) @ Latitude: 32.4567 Longitude: -110.9716  
Duration: 5-min 10-min 15-min 30-min 1-hr 2-hr 3-hr 6-hr 12-hr 24-hr  
Point Values (in): 0.88 1.34 1.66 2.24 2.77 3.09 3.25 3.58 3.91 4.65

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.431            |
| C         | 41      | 87.3         | 0.564            |
| D         | 18      | 90.3         | 0.649            |
| Imp.      | 65      | 99           | 0.958            |

Weighted Runoff Coef. (Cw): 0.81  
Time of Concentration: 5 min  
Rainfall Intensity (i) @ Tc: 10.56 in/hr  
Runoff Supply Rate (q) @ Tc: 8.51 in/hr  
**PEAK DISCHARGE:** 22.8 cfs



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                             |                |                        |
|----------------------|-----------------------------|----------------|------------------------|
| Client:              | Grenier Engineering         | Prepared by:   | lkr                    |
| Project Name:        | Residences at Morning Vista | Date:          | 01/09/2023             |
| Concentration Point: | S2, S3, S3.1                | Job #          |                        |
| Watershed Area:      | 0.08 Acres                  | Watershed Type | High Density Urbanized |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 0.7         | 132         | 0.0049     | 0.04              |

|                                  |              |      |                     |        |
|----------------------------------|--------------|------|---------------------|--------|
| Length of Watercourse (Lc):      | 132          | feet | Mean Slope:         | 0.0049 |
| Length to Cen. of Gravity (Lca): | 66           | feet | Weighted Basin Fac: | 0.04   |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30     |

**RETURN PERIOD: 100-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |        |        |        |                   |                      |
|--------------------|---------------------------|--------|--------|--------|-------------------|----------------------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ |        |        |        | Latitude: 32.4567 | Longitude: -110.9716 |
| Duration:          | 5-min                     | 10-min | 15-min | 30-min | 1-hr              | 2-hr                 |
| Point Values (in): | 0.88                      | 1.34   | 1.66   | 2.24   | 2.77              | 3.09                 |
|                    | 3.25                      | 3.58   | 3.91   | 4.65   |                   |                      |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.431            |
| C         | 41      | 87.3         | 0.564            |
| D         | 18      | 90.3         | 0.649            |
| Imp.      | 80      | 99           | 0.958            |

|                              |             |
|------------------------------|-------------|
| Weighted Runoff Coef. (Cw):  | 0.87        |
| Time of Concentration:       | 5 min       |
| Rainfall Intensity (i) @ Tc: | 10.56 in/hr |
| Runoff Supply Rate (q) @ Tc: | 9.19 in/hr  |
| <b>PEAK DISCHARGE:</b>       | 0.7 cfs     |



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                             |                |                        |
|----------------------|-----------------------------|----------------|------------------------|
| Client:              | Grenier Engineering         | Prepared by:   | lkr                    |
| Project Name:        | Residences at Morning Vista | Date:          | 01/09/2023             |
| Concentration Point: | S3.2, S3.3                  | Job #          |                        |
| Watershed Area:      | .09 Acres                   | Watershed Type | High Density Urbanized |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 0.7         | 136         | 0.0048     | 0.04              |

|                                  |              |      |                     |        |
|----------------------------------|--------------|------|---------------------|--------|
| Length of Watercourse (Lc):      | 136          | feet | Mean Slope:         | 0.0048 |
| Length to Cen. of Gravity (Lca): | 68           | feet | Weighted Basin Fac: | 0.04   |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30     |

**RETURN PERIOD: 100-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |        |        |        |                   |                      |
|--------------------|---------------------------|--------|--------|--------|-------------------|----------------------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ |        |        |        | Latitude: 32.4567 | Longitude: -110.9716 |
| Duration:          | 5-min                     | 10-min | 15-min | 30-min | 1-hr              | 2-hr                 |
| Point Values (in): | 0.88                      | 1.34   | 1.66   | 2.24   | 2.77              | 3.09                 |
|                    | 3.25                      | 3.58   | 3.91   | 4.65   |                   |                      |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.431            |
| C         | 41      | 87.3         | 0.564            |
| D         | 18      | 90.3         | 0.649            |
| Imp.      | 80      | 99           | 0.958            |

|                              |             |
|------------------------------|-------------|
| Weighted Runoff Coef. (Cw):  | 0.87        |
| Time of Concentration:       | 5 min       |
| Rainfall Intensity (i) @ Tc: | 10.56 in/hr |
| Runoff Supply Rate (q) @ Tc: | 9.19 in/hr  |
| <b>PEAK DISCHARGE:</b>       | 0.8 cfs     |



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                             |                |            |
|----------------------|-----------------------------|----------------|------------|
| Client:              | Grenier Engineering         | Prepared by:   | lkr        |
| Project Name:        | Residences at Morning Vista | Date:          | 01/09/2023 |
| Concentration Point: | S4                          | Job #          |            |
| Watershed Area:      | 0.11 Acres                  | Watershed Type | Mixed      |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 0.7         | 108         | 0.006      | 0.04              |

|                                  |              |      |                     |       |
|----------------------------------|--------------|------|---------------------|-------|
| Length of Watercourse (Lc):      | 108          | feet | Mean Slope:         | 0.006 |
| Length to Cen. of Gravity (Lca): | 54           | feet | Weighted Basin Fac: | 0.04  |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30    |

**RETURN PERIOD: 100-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |        |        |        |                   |                      |      |      |       |       |
|--------------------|---------------------------|--------|--------|--------|-------------------|----------------------|------|------|-------|-------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ |        |        |        | Latitude: 32.4567 | Longitude: -110.9716 |      |      |       |       |
| Duration:          | 5-min                     | 10-min | 15-min | 30-min | 1-hr              | 2-hr                 | 3-hr | 6-hr | 12-hr | 24-hr |
| Point Values (in): | 0.88                      | 1.34   | 1.66   | 2.24   | 2.77              | 3.09                 | 3.25 | 3.58 | 3.91  | 4.65  |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.431            |
| C         | 41      | 87.3         | 0.564            |
| D         | 18      | 90.3         | 0.649            |
| Imp.      | 0       | 99           | 0.958            |

|                              |             |
|------------------------------|-------------|
| Weighted Runoff Coef. (Cw):  | 0.52        |
| Time of Concentration:       | 5 min       |
| Rainfall Intensity (i) @ Tc: | 10.56 in/hr |
| Runoff Supply Rate (q) @ Tc: | 5.54 in/hr  |
| <b>PEAK DISCHARGE:</b>       | 0.6 cfs     |



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                             |                |            |
|----------------------|-----------------------------|----------------|------------|
| Client:              | Grenier Engineering         | Prepared by:   | lkr        |
| Project Name:        | Residences at Morning Vista | Date:          | 01/09/2023 |
| Concentration Point: | S5                          | Job #          |            |
| Watershed Area:      | 0.09 Acres                  | Watershed Type | Mixed      |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 6.4         | 238         | 0.0269     | 0.04              |

|                                  |              |      |                     |        |
|----------------------------------|--------------|------|---------------------|--------|
| Length of Watercourse (Lc):      | 238          | feet | Mean Slope:         | 0.0269 |
| Length to Cen. of Gravity (Lca): | 119          | feet | Weighted Basin Fac: | 0.04   |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30     |

**RETURN PERIOD: 100-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |        |        |        |                   |                      |      |      |       |       |
|--------------------|---------------------------|--------|--------|--------|-------------------|----------------------|------|------|-------|-------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ |        |        |        | Latitude: 32.4567 | Longitude: -110.9716 |      |      |       |       |
| Duration:          | 5-min                     | 10-min | 15-min | 30-min | 1-hr              | 2-hr                 | 3-hr | 6-hr | 12-hr | 24-hr |
| Point Values (in): | 0.88                      | 1.34   | 1.66   | 2.24   | 2.77              | 3.09                 | 3.25 | 3.58 | 3.91  | 4.65  |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.431            |
| C         | 41      | 87.3         | 0.564            |
| D         | 18      | 90.3         | 0.649            |
| Imp.      | 0       | 99           | 0.958            |

|                              |             |
|------------------------------|-------------|
| Weighted Runoff Coef. (Cw):  | 0.52        |
| Time of Concentration:       | 5 min       |
| Rainfall Intensity (i) @ Tc: | 10.56 in/hr |
| Runoff Supply Rate (q) @ Tc: | 5.54 in/hr  |
| <b>PEAK DISCHARGE:</b>       | 0.5 cfs     |



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                             |                |            |
|----------------------|-----------------------------|----------------|------------|
| Client:              | Grenier Engineering         | Prepared by:   | lkr        |
| Project Name:        | Residences at Morning Vista | Date:          | 01/09/2023 |
| Concentration Point: | B1                          | Job #          |            |
| Watershed Area:      | 0.07 Acres                  | Watershed Type | Mixed      |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 3           | 224         | 0.0134     | 0.04              |

|                                  |              |      |                     |        |
|----------------------------------|--------------|------|---------------------|--------|
| Length of Watercourse (Lc):      | 224          | feet | Mean Slope:         | 0.0134 |
| Length to Cen. of Gravity (Lca): | 112          | feet | Weighted Basin Fac: | 0.04   |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30     |

**RETURN PERIOD: 100-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |        |        |        |                   |                      |      |      |       |       |
|--------------------|---------------------------|--------|--------|--------|-------------------|----------------------|------|------|-------|-------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ |        |        |        | Latitude: 32.4567 | Longitude: -110.9716 |      |      |       |       |
| Duration:          | 5-min                     | 10-min | 15-min | 30-min | 1-hr              | 2-hr                 | 3-hr | 6-hr | 12-hr | 24-hr |
| Point Values (in): | 0.88                      | 1.34   | 1.66   | 2.24   | 2.77              | 3.09                 | 3.25 | 3.58 | 3.91  | 4.65  |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.431            |
| C         | 41      | 87.3         | 0.564            |
| D         | 18      | 90.3         | 0.649            |
| Imp.      | 0       | 99           | 0.958            |

|                              |             |
|------------------------------|-------------|
| Weighted Runoff Coef. (Cw):  | 0.52        |
| Time of Concentration:       | 5 min       |
| Rainfall Intensity (i) @ Tc: | 10.56 in/hr |
| Runoff Supply Rate (q) @ Tc: | 5.54 in/hr  |
| <b>PEAK DISCHARGE:</b>       | 0.4 cfs     |



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                             |                |            |
|----------------------|-----------------------------|----------------|------------|
| Client:              | Grenier Engineering         | Prepared by:   | lkr        |
| Project Name:        | Residences at Morning Vista | Date:          | 01/09/2023 |
| Concentration Point: | B2                          | Job #          |            |
| Watershed Area:      | 0.5 Acres                   | Watershed Type | Mixed      |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 3           | 224         | 0.0134     | 0.04              |
| 2         | 22          | 273         | 0.0806     | 0.074             |

|                                  |              |      |                     |        |
|----------------------------------|--------------|------|---------------------|--------|
| Length of Watercourse (Lc):      | 497          | feet | Mean Slope:         | 0.0294 |
| Length to Cen. of Gravity (Lca): | 248          | feet | Weighted Basin Fac: | 0.059  |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30     |

**RETURN PERIOD: 2-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |                   |                      |        |      |      |      |      |       |       |
|--------------------|---------------------------|-------------------|----------------------|--------|------|------|------|------|-------|-------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ | Latitude: 32.4567 | Longitude: -110.9716 |        |      |      |      |      |       |       |
| Duration:          | 5-min                     | 10-min            | 15-min               | 30-min | 1-hr | 2-hr | 3-hr | 6-hr | 12-hr | 24-hr |
| Point Values (in): | 0.37                      | 0.56              | 0.69                 | 0.93   | 1.15 | 1.3  | 1.37 | 1.57 | 1.78  | 2.08  |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.149            |
| C         | 41      | 87.3         | 0.277            |
| D         | 18      | 90.3         | 0.378            |
| Imp.      | 0       | 99           | 0.902            |

|                              |            |
|------------------------------|------------|
| Weighted Runoff Coef. (Cw):  | 0.24       |
| Time of Concentration:       | 10.7 min   |
| Rainfall Intensity (i) @ Tc: | 3.24 in/hr |
| Runoff Supply Rate (q) @ Tc: | 0.79 in/hr |
| <b>PEAK DISCHARGE:</b>       | 0.4 cfs    |



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                             |                |            |
|----------------------|-----------------------------|----------------|------------|
| Client:              | Grenier Engineering         | Prepared by:   | lkr        |
| Project Name:        | Residences at Morning Vista | Date:          | 01/09/2023 |
| Concentration Point: | B2                          | Job #          |            |
| Watershed Area:      | 0.5 Acres                   | Watershed Type | Mixed      |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 3           | 224         | 0.0134     | 0.04              |
| 2         | 22          | 273         | 0.0806     | 0.074             |

|                                  |              |      |                     |        |
|----------------------------------|--------------|------|---------------------|--------|
| Length of Watercourse (Lc):      | 497          | feet | Mean Slope:         | 0.0294 |
| Length to Cen. of Gravity (Lca): | 248          | feet | Weighted Basin Fac: | 0.059  |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30     |

**RETURN PERIOD: 10-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |                   |                      |        |      |      |      |      |       |       |
|--------------------|---------------------------|-------------------|----------------------|--------|------|------|------|------|-------|-------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ | Latitude: 32.4567 | Longitude: -110.9716 |        |      |      |      |      |       |       |
| Duration:          | 5-min                     | 10-min            | 15-min               | 30-min | 1-hr | 2-hr | 3-hr | 6-hr | 12-hr | 24-hr |
| Point Values (in): | 0.57                      | 0.87              | 1.08                 | 1.45   | 1.79 | 2    | 2.08 | 2.32 | 2.59  | 3.04  |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.285            |
| C         | 41      | 87.3         | 0.425            |
| D         | 18      | 90.3         | 0.523            |
| Imp.      | 0       | 99           | 0.935            |

|                              |                |
|------------------------------|----------------|
| Weighted Runoff Coef. (Cw):  | 0.39           |
| Time of Concentration:       | 7 min          |
| Rainfall Intensity (i) @ Tc: | 5.92 in/hr     |
| Runoff Supply Rate (q) @ Tc: | 2.28 in/hr     |
| <b>PEAK DISCHARGE:</b>       | <u>1.1 cfs</u> |



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                             |                |            |
|----------------------|-----------------------------|----------------|------------|
| Client:              | Grenier Engineering         | Prepared by:   | lkr        |
| Project Name:        | Residences at Morning Vista | Date:          | 01/09/2023 |
| Concentration Point: | B2                          | Job #          |            |
| Watershed Area:      | 0.5 Acres                   | Watershed Type | Mixed      |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 3           | 224         | 0.0134     | 0.04              |
| 2         | 22          | 273         | 0.0806     | 0.074             |

|                                  |              |      |                     |        |
|----------------------------------|--------------|------|---------------------|--------|
| Length of Watercourse (Lc):      | 497          | feet | Mean Slope:         | 0.0294 |
| Length to Cen. of Gravity (Lca): | 248          | feet | Weighted Basin Fac: | 0.059  |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30     |

**RETURN PERIOD: 100-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |                   |                      |        |      |      |      |      |       |       |
|--------------------|---------------------------|-------------------|----------------------|--------|------|------|------|------|-------|-------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ | Latitude: 32.4567 | Longitude: -110.9716 |        |      |      |      |      |       |       |
| Duration:          | 5-min                     | 10-min            | 15-min               | 30-min | 1-hr | 2-hr | 3-hr | 6-hr | 12-hr | 24-hr |
| Point Values (in): | 0.88                      | 1.34              | 1.66                 | 2.24   | 2.77 | 3.09 | 3.25 | 3.58 | 3.91  | 4.65  |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.431            |
| C         | 41      | 87.3         | 0.564            |
| D         | 18      | 90.3         | 0.649            |
| Imp.      | 0       | 99           | 0.958            |

|                              |             |
|------------------------------|-------------|
| Weighted Runoff Coef. (Cw):  | 0.52        |
| Time of Concentration:       | 5 min       |
| Rainfall Intensity (i) @ Tc: | 10.56 in/hr |
| Runoff Supply Rate (q) @ Tc: | 5.54 in/hr  |
| <b>PEAK DISCHARGE:</b>       | 2.8 cfs     |



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                             |                |            |
|----------------------|-----------------------------|----------------|------------|
| Client:              | Grenier Engineering         | Prepared by:   | lkr        |
| Project Name:        | Residences at Morning Vista | Date:          | 01/09/2023 |
| Concentration Point: | B3                          | Job #          |            |
| Watershed Area:      | 0.08 Acres                  | Watershed Type | Mixed      |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 1.9         | 184         | 0.0103     | 0.04              |

|                                  |              |      |                     |        |
|----------------------------------|--------------|------|---------------------|--------|
| Length of Watercourse (Lc):      | 184          | feet | Mean Slope:         | 0.0103 |
| Length to Cen. of Gravity (Lca): | 92           | feet | Weighted Basin Fac: | 0.04   |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30     |

**RETURN PERIOD: 2-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |        |        |        |                   |                      |      |      |       |       |
|--------------------|---------------------------|--------|--------|--------|-------------------|----------------------|------|------|-------|-------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ |        |        |        | Latitude: 32.4567 | Longitude: -110.9716 |      |      |       |       |
| Duration:          | 5-min                     | 10-min | 15-min | 30-min | 1-hr              | 2-hr                 | 3-hr | 6-hr | 12-hr | 24-hr |
| Point Values (in): | 0.37                      | 0.56   | 0.69   | 0.93   | 1.15              | 1.3                  | 1.37 | 1.57 | 1.78  | 2.08  |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.149            |
| C         | 41      | 87.3         | 0.277            |
| D         | 18      | 90.3         | 0.378            |
| Imp.      | 0       | 99           | 0.902            |

|                              |            |
|------------------------------|------------|
| Weighted Runoff Coef. (Cw):  | 0.24       |
| Time of Concentration:       | 5.5 min    |
| Rainfall Intensity (i) @ Tc: | 4.25 in/hr |
| Runoff Supply Rate (q) @ Tc: | 1.03 in/hr |
| <b>PEAK DISCHARGE:</b>       | 0.1 cfs    |



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                             |                |            |
|----------------------|-----------------------------|----------------|------------|
| Client:              | Grenier Engineering         | Prepared by:   | lkr        |
| Project Name:        | Residences at Morning Vista | Date:          | 01/09/2023 |
| Concentration Point: | B3                          | Job #          |            |
| Watershed Area:      | 0.08 Acres                  | Watershed Type | Mixed      |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 1.9         | 184         | 0.0103     | 0.04              |

|                                  |              |      |                     |        |
|----------------------------------|--------------|------|---------------------|--------|
| Length of Watercourse (Lc):      | 184          | feet | Mean Slope:         | 0.0103 |
| Length to Cen. of Gravity (Lca): | 92           | feet | Weighted Basin Fac: | 0.04   |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30     |

**RETURN PERIOD: 10-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |        |        |        |                   |                      |      |      |       |       |
|--------------------|---------------------------|--------|--------|--------|-------------------|----------------------|------|------|-------|-------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ |        |        |        | Latitude: 32.4567 | Longitude: -110.9716 |      |      |       |       |
| Duration:          | 5-min                     | 10-min | 15-min | 30-min | 1-hr              | 2-hr                 | 3-hr | 6-hr | 12-hr | 24-hr |
| Point Values (in): | 0.57                      | 0.87   | 1.08   | 1.45   | 1.79              | 2                    | 2.08 | 2.32 | 2.59  | 3.04  |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.285            |
| C         | 41      | 87.3         | 0.425            |
| D         | 18      | 90.3         | 0.523            |
| Imp.      | 0       | 99           | 0.935            |

|                              |            |
|------------------------------|------------|
| Weighted Runoff Coef. (Cw):  | 0.39       |
| Time of Concentration:       | 5 min      |
| Rainfall Intensity (i) @ Tc: | 6.84 in/hr |
| Runoff Supply Rate (q) @ Tc: | 2.64 in/hr |
| <b>PEAK DISCHARGE:</b>       | 0.2 cfs    |



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                             |                |            |
|----------------------|-----------------------------|----------------|------------|
| Client:              | Grenier Engineering         | Prepared by:   | lkr        |
| Project Name:        | Residences at Morning Vista | Date:          | 01/09/2023 |
| Concentration Point: | B3                          | Job #          |            |
| Watershed Area:      | 0.08 Acres                  | Watershed Type | Mixed      |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 1.9         | 184         | 0.0103     | 0.04              |

|                                  |              |      |                     |        |
|----------------------------------|--------------|------|---------------------|--------|
| Length of Watercourse (Lc):      | 184          | feet | Mean Slope:         | 0.0103 |
| Length to Cen. of Gravity (Lca): | 92           | feet | Weighted Basin Fac: | 0.04   |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30     |

**RETURN PERIOD: 100-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |        |        |        |                   |                      |      |      |       |       |
|--------------------|---------------------------|--------|--------|--------|-------------------|----------------------|------|------|-------|-------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ |        |        |        | Latitude: 32.4567 | Longitude: -110.9716 |      |      |       |       |
| Duration:          | 5-min                     | 10-min | 15-min | 30-min | 1-hr              | 2-hr                 | 3-hr | 6-hr | 12-hr | 24-hr |
| Point Values (in): | 0.88                      | 1.34   | 1.66   | 2.24   | 2.77              | 3.09                 | 3.25 | 3.58 | 3.91  | 4.65  |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.431            |
| C         | 41      | 87.3         | 0.564            |
| D         | 18      | 90.3         | 0.649            |
| Imp.      | 0       | 99           | 0.958            |

|                              |             |
|------------------------------|-------------|
| Weighted Runoff Coef. (Cw):  | 0.52        |
| Time of Concentration:       | 5 min       |
| Rainfall Intensity (i) @ Tc: | 10.56 in/hr |
| Runoff Supply Rate (q) @ Tc: | 5.54 in/hr  |
| <b>PEAK DISCHARGE:</b>       | 0.4 cfs     |

## Appendix C. Hydraulics

## Calculations for Scuppers

Project: Residences at Morning Vista

### 10.6.2 Capacity of a Curb Inlet in a Sag

A curb inlet in a sag operates as a weir to depths up to the height of the curb inlet, and as an orifice at depths greater than 1.4 times the opening height. Between those depths, flow is in a transition stage.

The equation for computing the interception capacity of a curb inlet *without a depression* which operates as a weir is:

$$Q_i = 3 LY_i^{3/2} \quad (10.14)$$

Equation can be used for scuppers if thickness of scupper is negligible (otherwise use HDS#5, Eqn. 28)

Required capacity is 10-year flow plus 50% clogging

**Design flow = 100-yr**  
**No clogging factor**

| Concentration Point | $Q_{100}$ (cfs) | Design Depth ( $Y_i$ , in feet) | Scupper Opening ( $L$ , in feet) (minimum) |
|---------------------|-----------------|---------------------------------|--------------------------------------------|
| S1                  | 23              | 0.5                             | 22                                         |
| S2                  | 0.7             | 0.5                             | 0.7                                        |
| S3                  | 0.7             | 0.5                             | 0.7                                        |
| S3.1                | 0.7             | 0.5                             | 0.7                                        |
| S3.2                | 0.8             | 0.5                             | 0.8                                        |
| S3.3                | 0.8             | 0.5                             | 0.8                                        |
| S4                  | 0.6             | 0.5                             | 0.6                                        |
| S5                  | 0.5             | 0.5                             | 0.5                                        |

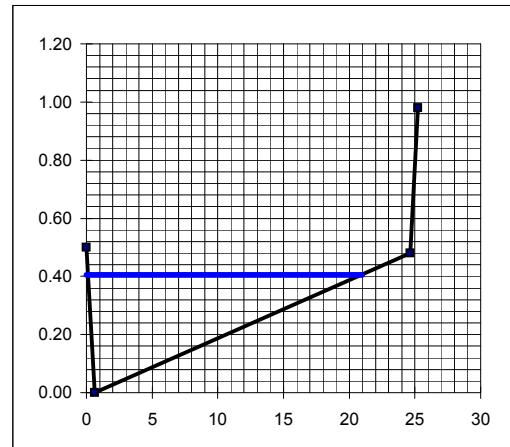
**PROJECT NAME:** Residences at Morning Vista  
**PROJECT DETAIL:** PAAL - 24 ft

**Concentration point:** S!  
 Q100: 23  
 Minimum slope = 3.0%

**MANNING'S NORMAL DEPTH FLOW CALCULATION FOR IRREGULAR SECTION:**

THE FOLLOWING CALCULATIONS DETERMINE FLOW IN IRREGULAR SECTIONS BASED ON MANNING'S EQUATION FOR NORMAL DEPTH IN UNIFORM FLOW AS SHOWN BELOW:

$$Q = V * A = (1.486 * Rh^{(2/3)} * \text{SQRT}(S) / n) * A$$


Where:

Q = Discharge (cfs)  
 V = Flow Velocity (fps)  
 A = Cross-Sectional Flow Area (sq ft)  
 R = Hydraulic Radius (ft) = A / WP  
 WP = Wetted Perimeter (ft)  
 S = Bed or Energy Slope (ft/ft)  
 n = Manning's Roughness Coefficient

SPREADSHEET DETERMINES DISCHARGE FOR A GIVEN WATER SURFACE ELEVATION (WSEL).

ENTER REQUESTED DATA; AND THEN ENTER STATION, ELEVATION, AND MANNING "n" VALUES IN TABLE BELOW.

NUMBER OF POINTS IN SECTION = 4  
 ASSUMED WSEL = 0.41  
 BED OR ENERGY SLOPE (FT/FT) = 0.030 design



POINT DATA

| POINT  | STATION | ELEV  | h     |
|--------|---------|-------|-------|
| Number | (ft.)   | (ft.) | (ft.) |
| 1      | 0       | 0.50  | 0.0   |
| 2      | 0.625   | 0.00  | 0.4   |
| 3      | 24.625  | 0.48  | 0.0   |
| 4      | 25      | 0.98  | 0.0   |

SEGMENT DATA

| Manning                    | TW    | A         | WP    | Rh    | V          | Q     |
|----------------------------|-------|-----------|-------|-------|------------|-------|
| n-value                    | (ft.) | (sq. ft.) | (ft.) | (ft.) | (ft./sec.) | (cfs) |
| N/A                        | N/A   | N/A       | N/A   | N/A   | N/A        | N/A   |
| 0.0130                     | 0.51  | 0.10      | 0.65  | 0.16  | 5.79       | 0.6   |
| 0.0160                     | 20.25 | 4.10      | 20.25 | 0.20  | 5.55       | 22.7  |
| 0.0160                     | 0.00  | 0.00      | 0.00  | 0.00  | 0.00       | 0.0   |
| VALUES FOR TOTAL SECTION = |       | 21        | 4     | 21    | 0.2        | 5.6   |
|                            |       |           |       |       |            | 23    |

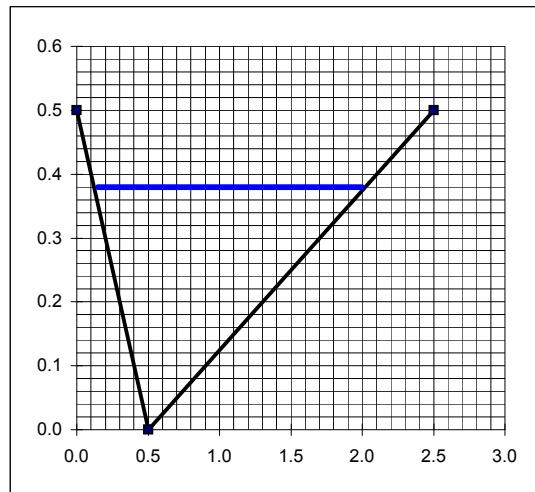
**PROJECT NAME:** Residences at Morning Vista  
**PROJECT DETAIL:** Grenier 8/C7.0

Conc point: B1  
 Q100: 0.4  
 Minimum slope = 0.6%

#### MANNING'S NORMAL DEPTH FLOW CALCULATION FOR IRREGULAR SECTIONS

THE FOLLOWING CALCULATIONS DETERMINE FLOW IN IRREGULAR SECTIONS BASED ON MANNING'S EQUATION FOR NORMAL DEPTH IN UNIFORM FLOW AS SHOWN BELOW:

$$Q = V * A = (1.486 * Rh^{(2/3)} * \text{SQRT}(S) / n) * A$$


Where:

Q = Discharge (cfs)  
 V = Flow Velocity (fps)  
 A = Cross-Sectional Flow Area (sq ft)  
 R = Hydraulic Radius (ft) = A / WP  
 WP = Wetted Perimeter (ft)  
 S = Bed or Energy Slope (ft/ft)  
 n = Manning's Roughness Coefficient

SPREADSHEET DETERMINES DISCHARGE FOR A GIVEN WATER SURFACE ELEVATION (WSEL).

ENTER REQUESTED DATA; AND THEN ENTER STATION, ELEVATION, AND MANNING "n" VALUES IN TABLE BELOW.

NUMBER OF POINTS IN SECTION = 3.00  
 ASSUMED WSEL = 0.38  
 BED OR ENERGY SLOPE (FT/FT) = 0.006 design  
 Freeboard 0.07 (ft)  
 Design Flow Depth 0.45 (ft)  
 Left Side slope (H:V) 1.0 (ft) grouted riprap  
 Right Side slope (H:V) 4.0 (ft) grouted riprap  
 Design Channel bottom width 0.0 (ft)  
 Design Channel Topwidth 2.2 (ft)



#### POINT DATA

| POINT  | STATION | ELEV  | h     |
|--------|---------|-------|-------|
| Number | (ft.)   | (ft.) | (ft.) |
| 1      | 0.0     | 0.5   | 0.0   |
| 2      | 0.5     | 0.0   | 0.4   |
| 3      | 2.5     | 0.5   | 0.0   |

#### SEGMENT DATA

| Manning | TW    | A         | WP    | Rh    | V          | Q     |
|---------|-------|-----------|-------|-------|------------|-------|
| n-value | (ft.) | (sq. ft.) | (ft.) | (ft.) | (ft./sec.) | (cfs) |
| N/A     | N/A   | N/A       | N/A   | N/A   | N/A        | N/A   |
| 0.0360  | 0.38  | 0.07      | 0.54  | 0.13  | 0.84       | 0.1   |
| 0.0360  | 1.52  | 0.29      | 1.57  | 0.18  | 1.04       | 0.3   |
|         | 2     | 0         | 2     | 0.2   | 1.0        | 0.4   |

VALUES FOR TOTAL SECTION =

$$F = 0.4$$

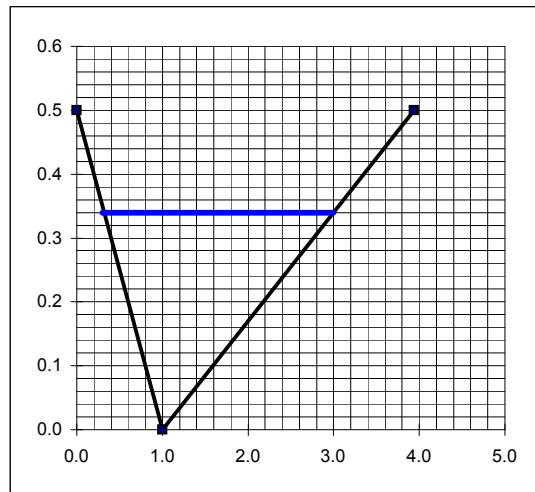
**PROJECT NAME:** Residences at Morning Vista  
**PROJECT DETAIL:** Grenier 17/C7.2

Conc point: B1  
 Q100: 0.4  
 Minimum slope = 0.6%

#### MANNING'S NORMAL DEPTH FLOW CALCULATION FOR IRREGULAR SECTIONS

THE FOLLOWING CALCULATIONS DETERMINE FLOW IN IRREGULAR SECTIONS BASED ON MANNING'S EQUATION FOR NORMAL DEPTH IN UNIFORM FLOW AS SHOWN BELOW:

$$Q = V * A = (1.486 * Rh^{(2/3)} * \text{SQRT}(S) / n) * A$$


Where:

Q = Discharge (cfs)  
 V = Flow Velocity (fps)  
 A = Cross-Sectional Flow Area (sq ft)  
 R = Hydraulic Radius (ft) = A / WP  
 WP = Wetted Perimeter (ft)  
 S = Bed or Energy Slope (ft/ft)  
 n = Manning's Roughness Coefficient

SPREADSHEET DETERMINES DISCHARGE FOR A GIVEN WATER SURFACE ELEVATION (WSEL).

ENTER REQUESTED DATA; AND THEN ENTER STATION, ELEVATION, AND MANNING "n" VALUES IN TABLE BELOW.

NUMBER OF POINTS IN SECTION = 3.00  
 ASSUMED WSEL = 0.34  
 BED OR ENERGY SLOPE (FT/FT) = 0.006 design  
 Freeboard 0.06 (ft)  
 Design Flow Depth 0.40 (ft)  
 Left Side slope (H:V) 2.0 (ft) riprap  
 Right Side slope (H:V) 5.9 (ft) riprap  
 Design Channel bottom width 0.0 (ft)  
 Design Channel Topwidth 3.1 (ft)



| POINT DATA   |               |            |         |
|--------------|---------------|------------|---------|
| POINT Number | STATION (ft.) | ELEV (ft.) | h (ft.) |
| 1            | 0.0           | 0.5        | 0.0     |
| 2            | 1.0           | 0.0        | 0.3     |
| 3            | 3.9           | 0.5        | 0.0     |

| SEGMENT DATA    |          |             |          |          |              |         |
|-----------------|----------|-------------|----------|----------|--------------|---------|
| Manning n-value | TW (ft.) | A (sq. ft.) | WP (ft.) | Rh (ft.) | V (ft./sec.) | Q (cfs) |
| N/A             | N/A      | N/A         | N/A      | N/A      | N/A          | N/A     |
| 0.0360          | 0.68     | 0.12        | 0.76     | 0.15     | 0.91         | 0.1     |
| 0.0360          | 2.00     | 0.34        | 2.03     | 0.17     | 0.97         | 0.3     |

VALUES FOR TOTAL SECTION = 3 0 3 0.2 1.0 0.4

F = 0.4

**PROJECT NAME:** Residences at Morning Vista

**PROJECT DETAIL:** Grenier 16/C7.1

Collector channel

Conc. Pt.: B1

Q100: 0.4

Minimum slope = 12.0%

**MANNING'S NORMAL DEPTH FLOW CALCULATION FOR IRREGULAR SECTION:**

THE FOLLOWING CALCULATIONS DETERMINE FLOW IN IRREGULAR SECTIONS BASED ON MANNING'S EQUATION FOR NORMAL DEPTH IN UNIFORM FLOW AS SHOWN BELOW:

$$Q = V * A = (1.486 * Rh^{(2/3)} * \text{SQRT}(S) / n) * A$$

Where:

Q = Discharge (cfs)

V = Flow Velocity (fps)

A = Cross-Sectional Flow Area (sq ft)

R = Hydraulic Radius (ft) = A / WP

WP = Wetted Perimeter (ft)

S = Bed or Energy Slope (ft/ft)

n = Manning's Roughness Coefficient

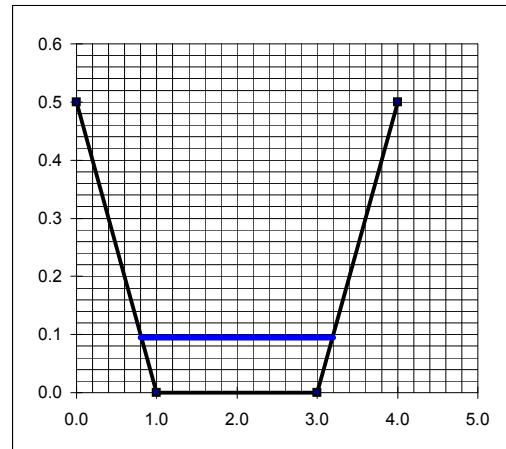
SPREADSHEET DETERMINES DISCHARGE FOR A GIVEN WATER SURFACE ELEVATION (WSEL).

ENTER REQUESTED DATA; AND THEN ENTER STATION, ELEVATION, AND MANNING "n" VALUES IN TABLE BELOW.

NUMBER OF POINTS IN SECTION = 4.00

ASSUMED WSEL= 0.10

BED OR ENERGY SLOPE (FT/FT) = 0.120 design


*Design Flow Depth*

*Left Side slope (H:V)* 0.19 (ft) double flow depth

*Right Side slope (H:V)* 2.0 (ft) riprap

*Design Channel bottom width* 2.0 (ft) riprap

*Design Channel Topwidth* 2.8 (ft)



**POINT DATA**

| POINT  | STATION | ELEV  | h     |
|--------|---------|-------|-------|
| Number | (ft.)   | (ft.) | (ft.) |
| 1      | 0.0     | 0.5   | 0.0   |
| 2      | 1.0     | 0.0   | 0.1   |
| 3      | 3.0     | 0.0   | 0.1   |
| 4      | 4.0     | 0.5   | 0.0   |

**SEGMENT DATA**

| Manning                    | TW     | A         | WP    | Rh    | V          | Q     |
|----------------------------|--------|-----------|-------|-------|------------|-------|
| n-value                    | (ft.)  | (sq. ft.) | (ft.) | (ft.) | (ft./sec.) | (cfs) |
| N/A                        | N/A    | N/A       | N/A   | N/A   | N/A        | N/A   |
| increase                   | 0.0360 | 0.19      | 0.01  | 0.21  | 0.04       | 1.74  |
| to get                     | 0.0610 | 2.00      | 0.19  | 2.00  | 0.10       | 1.76  |
| crit. depth                | 0.0360 | 0.19      | 0.01  | 0.21  | 0.04       | 1.74  |
| VALUES FOR TOTAL SECTION = | 2      | 0         | 2     | 0.1   | 1.8        | 0.4   |

$$F = 1.0$$

PROJECT NAME: Residences at Morning Vista

PROJECT DETAIL: Note 10/C4.0

Conc. Point: B3

Q100: 0.4

Minimum slope = 1.2%

#### MANNING'S NORMAL DEPTH FLOW CALCULATION FOR IRREGULAR SECTIONS

THE FOLLOWING CALCULATIONS DETERMINE FLOW IN IRREGULAR SECTIONS BASED ON MANNING'S EQUATION FOR NORMAL DEPTH IN UNIFORM FLOW AS SHOWN BELOW:

$$Q = V * A = (1.486 * Rh^{(2/3)} * \text{SQRT}(S) / n) * A$$

Where:

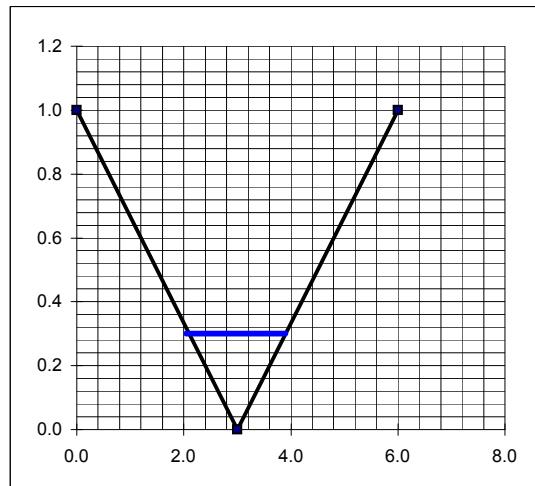
Q = Discharge (cfs)

V = Flow Velocity (fps)

A = Cross-Sectional Flow Area (sq ft)

R = Hydraulic Radius (ft) = A / WP

WP = Wetted Perimeter (ft)


S = Bed or Energy Slope (ft/ft)

n = Manning's Roughness Coefficient

SPREADSHEET DETERMINES DISCHARGE FOR A GIVEN WATER SURFACE ELEVATION (WSEL).

ENTER REQUESTED DATA; AND THEN ENTER STATION, ELEVATION, AND MANNING "n" VALUES IN TABLE BELOW.

|                               |              |
|-------------------------------|--------------|
| NUMBER OF POINTS IN SECTION = | 3.00         |
| ASSUMED WSEL=                 | 0.30         |
| BED OR ENERGY SLOPE (FT/FT) = | 0.012 design |
| Freeboard                     | 0.06 (ft)    |
| Design Flow Depth             | 0.36 (ft)    |
| Left Side slope (H:V)         | 3.0 (ft)     |
| Right Side slope (H:V)        | 3.0 (ft)     |
| Design Channel bottom width   | 0.0 (ft)     |
| Design Channel Topwidth       | 2.1 (ft)     |



#### POINT DATA

| POINT  | STATION | ELEV  | h     |
|--------|---------|-------|-------|
| Number | (ft.)   | (ft.) | (ft.) |
| 1      | 0.0     | 1.0   | 0.0   |
| 2      | 3.0     | 0.0   | 0.3   |
| 3      | 6.0     | 1.0   | 0.0   |

#### SEGMENT DATA

| Manning | TW    | A         | WP    | Rh    | V          | Q     |
|---------|-------|-----------|-------|-------|------------|-------|
| n-value | (ft.) | (sq. ft.) | (ft.) | (ft.) | (ft./sec.) | (cfs) |
| N/A     | N/A   | N/A       | N/A   | N/A   | N/A        | N/A   |
| 0.0300  | 0.90  | 0.14      | 0.95  | 0.14  | 1.48       | 0.2   |
| 0.0300  | 0.90  | 0.14      | 0.95  | 0.14  | 1.48       | 0.2   |

VALUES FOR TOTAL SECTION = 

|   |   |   |     |     |     |
|---|---|---|-----|-----|-----|
| 2 | 0 | 2 | 0.1 | 1.5 | 0.4 |
|---|---|---|-----|-----|-----|

F = 0.7

PROJECT NAME: Residences at Morning Vista

PROJECT DETAIL: Note 10/C4.0

Conc. Point: S4

Q100: 0.6

Minimum slope = 0.8%

#### MANNING'S NORMAL DEPTH FLOW CALCULATION FOR IRREGULAR SECTIONS

THE FOLLOWING CALCULATIONS DETERMINE FLOW IN IRREGULAR SECTIONS BASED ON MANNING'S EQUATION FOR NORMAL DEPTH IN UNIFORM FLOW AS SHOWN BELOW:

$$Q = V * A = (1.486 * Rh^{(2/3)} * \text{SQRT}(S) / n) * A$$

Where:

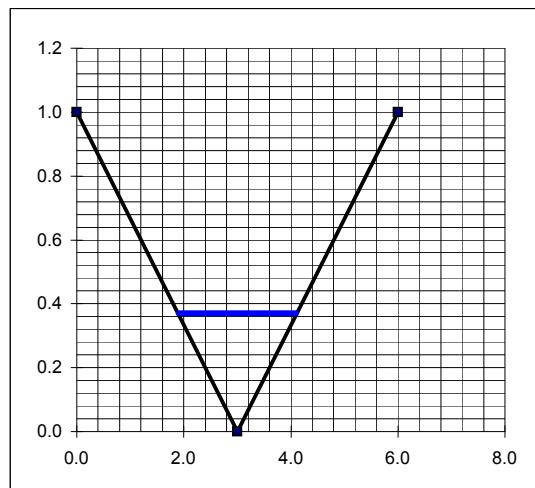
Q = Discharge (cfs)

V = Flow Velocity (fps)

A = Cross-Sectional Flow Area (sq ft)

R = Hydraulic Radius (ft) = A / WP

WP = Wetted Perimeter (ft)


S = Bed or Energy Slope (ft/ft)

n = Manning's Roughness Coefficient

SPREADSHEET DETERMINES DISCHARGE FOR A GIVEN WATER SURFACE ELEVATION (WSEL).

ENTER REQUESTED DATA; AND THEN ENTER STATION, ELEVATION, AND MANNING "n" VALUES IN TABLE BELOW.

NUMBER OF POINTS IN SECTION = 3.00  
ASSUMED WSEL= 0.37  
BED OR ENERGY SLOPE (FT/FT) = 0.008 design  
*Freeboard* 0.07 (ft)  
*Design Flow Depth* 0.44 (ft)  
*Left Side slope (H:V)* 3.0 (ft)  
*Right Side slope (H:V)* 3.0 (ft)  
*Design Channel bottom width* 0.0 (ft)  
*Design Channel Topwidth* 2.6 (ft)



| POINT DATA |         |       |       |
|------------|---------|-------|-------|
| POINT      | STATION | ELEV  | h     |
| Number     | (ft.)   | (ft.) | (ft.) |
| 1          | 0.0     | 1.0   | 0.0   |
| 2          | 3.0     | 0.0   | 0.4   |
| 3          | 6.0     | 1.0   | 0.0   |

| SEGMENT DATA |       |           |       |       |            |       |
|--------------|-------|-----------|-------|-------|------------|-------|
| Manning      | TW    | A         | WP    | Rh    | V          | Q     |
| n-value      | (ft.) | (sq. ft.) | (ft.) | (ft.) | (ft./sec.) | (cfs) |
| N/A          | N/A   | N/A       | N/A   | N/A   | N/A        | N/A   |
| 0.0300       | 1.11  | 0.21      | 1.17  | 0.18  | 1.39       | 0.3   |
| 0.0300       | 1.11  | 0.21      | 1.17  | 0.18  | 1.39       | 0.3   |

VALUES FOR TOTAL SECTION = 

|   |   |   |     |     |     |
|---|---|---|-----|-----|-----|
| 2 | 0 | 2 | 0.2 | 1.4 | 0.6 |
|---|---|---|-----|-----|-----|

F = 0.6

**PROJECT NAME:** Residences at Morning Vista

**PROJECT DETAIL:** Grenier 9/C7.0

Conc. Point: S5 v-ditch

Q100: 0.5

Minimum slope = 2.6%

#### MANNING'S NORMAL DEPTH FLOW CALCULATION FOR IRREGULAR SECTIONS

THE FOLLOWING CALCULATIONS DETERMINE FLOW IN IRREGULAR SECTIONS BASED ON MANNING'S EQUATION FOR NORMAL DEPTH IN UNIFORM FLOW AS SHOWN BELOW:

$$Q = V * A = (1.486 * Rh^{(2/3)} * \text{SQRT}(S) / n) * A$$

Where:

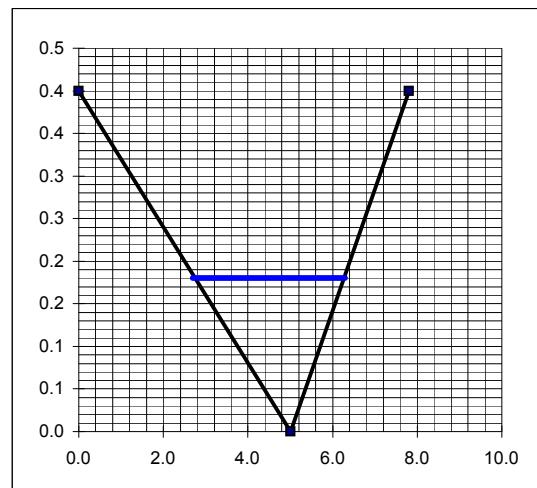
Q = Discharge (cfs)

V = Flow Velocity (fps)

A = Cross-Sectional Flow Area (sq ft)

R = Hydraulic Radius (ft) = A / WP

WP = Wetted Perimeter (ft)


S = Bed or Energy Slope (ft/ft)

n = Manning's Roughness Coefficient

SPREADSHEET DETERMINES DISCHARGE FOR A GIVEN WATER SURFACE ELEVATION (WSEL).

ENTER REQUESTED DATA; AND THEN ENTER STATION, ELEVATION, AND MANNING "n" VALUES IN TABLE BELOW.

|                                    |              |
|------------------------------------|--------------|
| NUMBER OF POINTS IN SECTION =      | 3.00         |
| ASSUMED WSEL=                      | 0.18         |
| BED OR ENERGY SLOPE (FT/FT) =      | 0.026 design |
| <i>Freeboard</i>                   | 0.04 (ft)    |
| <i>Design Flow Depth</i>           | 0.22 (ft)    |
| <i>Left Side slope (H:V)</i>       | 12.5 (ft)    |
| <i>Right Side slope (H:V)</i>      | 7.0 (ft)     |
| <i>Design Channel bottom width</i> | 0.0 (ft)     |
| <i>Design Channel Topwidth</i>     | 4.2 (ft)     |



#### POINT DATA

| POINT  | STATION | ELEV  | h     |
|--------|---------|-------|-------|
| Number | (ft.)   | (ft.) | (ft.) |
| 1      | 0.0     | 0.4   | 0.0   |
| 2      | 5.0     | 0.0   | 0.2   |
| 3      | 7.8     | 0.4   | 0.0   |

#### SEGMENT DATA

| Manning | TW    | A         | WP    | Rh    | V          | Q     |
|---------|-------|-----------|-------|-------|------------|-------|
| n-value | (ft.) | (sq. ft.) | (ft.) | (ft.) | (ft./sec.) | (cfs) |
| N/A     | N/A   | N/A       | N/A   | N/A   | N/A        | N/A   |
| 0.0300  | 2.25  | 0.20      | 2.26  | 0.09  | 1.60       | 0.3   |
| 0.0300  | 1.26  | 0.11      | 1.27  | 0.09  | 1.59       | 0.2   |

VALUES FOR TOTAL SECTION = 

|   |   |   |     |     |     |
|---|---|---|-----|-----|-----|
| 4 | 0 | 4 | 0.1 | 1.6 | 0.5 |
|---|---|---|-----|-----|-----|

F = 0.9

**Appendix D. Scour and Erosion  
(not used)**

## Appendix E. Detention Routing



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                             |                |                        |
|----------------------|-----------------------------|----------------|------------------------|
| Client:              | Grenier Engineering         | Prepared by:   | lkr                    |
| Project Name:        | Residences at Morning Vista | Date:          | 01/09/2023             |
| Concentration Point: | Basin inflow                | Job #          |                        |
| Watershed Area:      | 2.8 Acres                   | Watershed Type | High Density Urbanized |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 0.9         | 108         | 0.0083     | 0.045             |
| 2         | 12.4        | 462         | 0.0268     | 0.04              |

|                                  |              |      |                     |        |
|----------------------------------|--------------|------|---------------------|--------|
| Length of Watercourse (Lc):      | 570          | feet | Mean Slope:         | 0.0203 |
| Length to Cen. of Gravity (Lca): | 285          | feet | Weighted Basin Fac: | 0.041  |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30     |

**RETURN PERIOD: 2-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |        |        |                   |                      |
|--------------------|---------------------------|--------|--------|-------------------|----------------------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ |        |        | Latitude: 32.4567 | Longitude: -110.9716 |
| Duration:          | 5-min                     | 10-min | 15-min | 30-min            | 1-hr                 |
| Point Values (in): | 0.37                      | 0.56   | 0.69   | 0.93              | 1.15                 |
|                    | 2-hr                      | 3-hr   | 6-hr   | 12-hr             | 24-hr                |
|                    | 1.3                       | 1.37   | 1.57   | 1.78              | 2.08                 |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.149            |
| C         | 41      | 87.3         | 0.277            |
| D         | 18      | 90.3         | 0.378            |
| Imp.      | 61      | 99           | 0.902            |

|                              |                |
|------------------------------|----------------|
| Weighted Runoff Coef. (Cw):  | 0.64           |
| Time of Concentration:       | 5.8 min        |
| Rainfall Intensity (i) @ Tc: | 4.15 in/hr     |
| Runoff Supply Rate (q) @ Tc: | 2.68 in/hr     |
| <b>PEAK DISCHARGE:</b>       | <u>7.6 cfs</u> |



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                             |                |                        |
|----------------------|-----------------------------|----------------|------------------------|
| Client:              | Grenier Engineering         | Prepared by:   | lkr                    |
| Project Name:        | Residences at Morning Vista | Date:          | 01/09/2023             |
| Concentration Point: | Basin inflow                | Job #          |                        |
| Watershed Area:      | 2.8 Acres                   | Watershed Type | High Density Urbanized |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 0.9         | 108         | 0.0083     | 0.045             |
| 2         | 12.4        | 462         | 0.0268     | 0.04              |

|                                  |              |      |                     |        |
|----------------------------------|--------------|------|---------------------|--------|
| Length of Watercourse (Lc):      | 570          | feet | Mean Slope:         | 0.0203 |
| Length to Cen. of Gravity (Lca): | 285          | feet | Weighted Basin Fac: | 0.041  |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30     |

**RETURN PERIOD: 10-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |        |        |                   |                      |
|--------------------|---------------------------|--------|--------|-------------------|----------------------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ |        |        | Latitude: 32.4567 | Longitude: -110.9716 |
| Duration:          | 5-min                     | 10-min | 15-min | 30-min            | 1-hr                 |
| Point Values (in): | 0.57                      | 0.87   | 1.08   | 1.45              | 1.79                 |
|                    | 2                         |        | 3-hr   | 6-hr              | 12-hr                |
|                    |                           |        | 2.08   | 2.32              | 2.59                 |
|                    |                           |        |        |                   | 3.04                 |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.285            |
| C         | 41      | 87.3         | 0.425            |
| D         | 18      | 90.3         | 0.523            |
| Imp.      | 61      | 99           | 0.935            |

|                              |                 |
|------------------------------|-----------------|
| Weighted Runoff Coef. (Cw):  | 0.72            |
| Time of Concentration:       | 5 min           |
| Rainfall Intensity (i) @ Tc: | 6.84 in/hr      |
| Runoff Supply Rate (q) @ Tc: | 4.93 in/hr      |
| <b>PEAK DISCHARGE:</b>       | <u>13.9 cfs</u> |



## HYDROLOGIC DATA SHEET FOR PIMA COUNTY FLOOD PEAK PROCEDURE

Generated using methods provided by Pima County Regional Flood Control District

|                      |                             |                |                        |
|----------------------|-----------------------------|----------------|------------------------|
| Client:              | Grenier Engineering         | Prepared by:   | lkr                    |
| Project Name:        | Residences at Morning Vista | Date:          | 01/09/2023             |
| Concentration Point: | Basin inflow                | Job #          |                        |
| Watershed Area:      | 2.8 Acres                   | Watershed Type | High Density Urbanized |

### Watercourse Data By Reach

| Reach No. | Height (Hi) | Length (Li) | Slope (Si) | Basin Factor (Nb) |
|-----------|-------------|-------------|------------|-------------------|
| 1         | 0.9         | 108         | 0.0083     | 0.045             |
| 2         | 12.4        | 462         | 0.0268     | 0.04              |

|                                  |              |      |                     |        |
|----------------------------------|--------------|------|---------------------|--------|
| Length of Watercourse (Lc):      | 570          | feet | Mean Slope:         | 0.0203 |
| Length to Cen. of Gravity (Lca): | 285          | feet | Weighted Basin Fac: | 0.041  |
| Veg. Cover Type(s):              | Desert Brush |      | Veg. Cover Density: | 30     |

**RETURN PERIOD: 100-years NOAA Data Obtained: 2021-06-20 01:40:01 PM**

|                    |                           |        |                   |                      |
|--------------------|---------------------------|--------|-------------------|----------------------|
| Rainfall Depths:   | NOAA Atlas 14 (90% UCL) @ |        | Latitude: 32.4567 | Longitude: -110.9716 |
| Duration:          | 5-min                     | 10-min | 15-min            | 30-min               |
| Point Values (in): | 0.88                      | 1.34   | 1.66              | 2.24                 |
|                    | 2.77                      | 3.09   | 3.25              | 3.58                 |
|                    | 3.91                      | 4.65   |                   |                      |

| Soil Type | Percent | Curve # (CN) | Runoff Coef. (C) |
|-----------|---------|--------------|------------------|
| B         | 41      | 81.9         | 0.431            |
| C         | 41      | 87.3         | 0.564            |
| D         | 18      | 90.3         | 0.649            |
| Imp.      | 61      | 99           | 0.958            |

|                              |                 |
|------------------------------|-----------------|
| Weighted Runoff Coef. (Cw):  | 0.79            |
| Time of Concentration:       | 5 min           |
| Rainfall Intensity (i) @ Tc: | 10.56 in/hr     |
| Runoff Supply Rate (q) @ Tc: | 8.33 in/hr      |
| <b>PEAK DISCHARGE:</b>       | <u>23.5 cfs</u> |

## Calculations for Grate Inlets in a sump acting as a weir

Project : **Residences at Morning Glory**

Determine grate inlet size for maximum inflow of 21 cfs before underground tank is filled

Equation 10.10 (City of Tucson Drainage Standards Manual)

$Qi = 3 * P * Y_i^{1.5}$ , where P= perimeter

Double perimeter for clogging factor to account for debris (page 10.24)

|         |             |      |
|---------|-------------|------|
| Depth = | <b>0.71</b> | feet |
|---------|-------------|------|

| Watershed Location | 100-year Discharge (cfs) | 100-year Perimeter (feet) |
|--------------------|--------------------------|---------------------------|
| Basin floor        | <b>21</b>                | 23.6                      |

### Proposed Circular Grate Inlets

|                        |      |
|------------------------|------|
| Diameter (ft)          | 2.5  |
| Perimeter (ft)         | 7.9  |
| Perimeter for 3 grates | 23.6 |

**PIMA COUNTY REGIONAL FLOOD CONTROL DISTRICT**

ROUTING OF A FLOOD HYDROGRAPH THROUGH A STORMWATER DETENTION / RETENTION FACILITY

Worksheet to Input the Inflow Hydrograph, & Automatically Perform the Routing Calculations using the Stage-Volume data, Volume-Outflow data, & SO Working Curve



Rev. 4/17

| Corner basin with vertical walls and underground tank |  |                 |  |
|-------------------------------------------------------|--|-----------------|--|
| Larry K. Roberts, P.E.                                |  | Project Address |  |
| Friday, January 13, 2023                              |  | Designer        |  |
| preliminary basin 2nd sub.xls                         |  | Run Date        |  |

Project Address  
Designer  
Run Date  
Program File Name

**GOVERNING EQUATION:** Ref: Applied Hydrology (Ven Te Chow, Editor 1964)

Mass Conservation:  $0.5 * (I_1 + I_2) * \Delta t - 0.5 * (O_1 + O_2) * \Delta t = S_2 - S_1$

Isolate, divide by  $\Delta t$ :  $0.5 * (I_1 + I_2 + S_1 / \Delta t - 0.5 * O_1) = S_2 / \Delta t + 0.5 * O_2$

**VARIABLES:**  $\Delta t$  time interval between hydrograph discharges.

$I_1, I_2$  inflow rate into facility at start and end of time interval from inflow hydrograph

$O_1, O_2$  facility outflow rate at start & end of time interval

$S_1, S_2$  stormwater in storage in the facility at start and end of time interval

Note: Input  $\Delta t$ , target discharges & inflow hydrographs for 3 storm frequencies into blue cells. Outflow hydrographs (yellow) are calculated from specified outlet configuration ( vol-outflow tab) and facility geometry (Stage-Vol tab). To add rows to this worksheet, add them in roughly the center of the range, then unhide all columns and copy hidden equations into the new rows. Zero discharge within and beyond the end of the hydrograph will not affect the routing. All blue cells in this spreadsheet must either be blank (highlight, right-click, Clear Contents) or must contain a number. In addition, the Stage - Volume data must be entered in numerically ascending order. This spreadsheet does not have a "clear" button to clear all input data in one action; to accomplish this, restart Excel using a blank copy of the spreadsheet.

| RESULTS: | max inflow | max outflow | total inflow volume   | max stage (H) * | Target  |        | * Max Design Stage = 4.9 ft Surface basin design stage |
|----------|------------|-------------|-----------------------|-----------------|---------|--------|--------------------------------------------------------|
|          |            |             |                       |                 | +B2+B3  |        |                                                        |
| 100-Year | 23.0 cfs   | 13.9 cfs    | 24370 ft <sup>3</sup> | 0.559 af        | 4.91 ft | 21 min | 14.0 cfs                                               |
| 10-Year  | 13.6 cfs   | 5.8 cfs     | 14415 ft <sup>3</sup> | 0.331 af        | 3.88 ft | 25 min | 6.7 cfs                                                |
| 2-Year   | 7.6 cfs    | 1.1 cfs     | 8150 ft <sup>3</sup>  | 0.187 af        | 2.96 ft | 36 min | 2.1 cfs                                                |

NOTE: IF H > MAX DESIGN STAGE,  
EXTEND STAGE-VOL DATA TO A  
HIGHER STAGE

\*\* target discharges not used in calculations; for informational use only

$\Delta t = 1.00$  min 0.0167 hr inflow hydrograph time interval

| 100-Year |        |        |          | 10-Year |      |          |        | 2-Year |          |         |       | 100-Year |       |         |       | 10-Year |       |         |       | 2-Year  |       |  |  |
|----------|--------|--------|----------|---------|------|----------|--------|--------|----------|---------|-------|----------|-------|---------|-------|---------|-------|---------|-------|---------|-------|--|--|
| index    | Inflow | time   | S/Δt+O/2 | Inflow  | time | S/Δt+O/2 | Inflow | time   | S/Δt+O/2 | outflow | Stage | outflow  | Stage | outflow | Stage | outflow | Stage | outflow | Stage | outflow | Stage |  |  |
| 0        | 0      | 0.0000 | 0.00     | 0       | 0    | 0.00     | 0      | 0      | 0.00     | 0.00    | 0.00  | 0.00     | 0.00  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.00  |  |  |
| 1        | 0      | 0.0167 | 0.22     | 0       | 0    | 0.13     | 0      | 0      | 0.07     | 0.00    | 0.01  | 0.00     | 0.00  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.00  |  |  |
| 2        | 1      | 0.0333 | 1.07     | 1       | 1    | 0.63     | 0.4    | 0.33   | 0.33     | 0.00    | 0.03  | 0.00     | 0.02  | 0.00    | 0.01  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.02  |  |  |
| 3        | 2      | 0.0500 | 2.90     | 1       | 1    | 1.72     | 0.7    | 0.89   | 0.89     | 0.01    | 0.08  | 0.00     | 0.05  | 0.00    | 0.02  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.05  |  |  |
| 4        | 4      | 0.0667 | 5.92     | 2       | 2    | 3.50     | 1.1    | 1.82   | 1.82     | 0.04    | 0.16  | 0.02     | 0.10  | 0.00    | 0.05  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.05  |  |  |
| 5        | 5      | 0.0833 | 10.24    | 3       | 3    | 6.07     | 1.6    | 3.17   | 3.17     | 0.10    | 0.28  | 0.04     | 0.17  | 0.01    | 0.09  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.09  |  |  |
| 6        | 7      | 0.1000 | 16.04    | 4       | 4    | 9.51     | 2.1    | 4.96   | 4.96     | 0.18    | 0.44  | 0.09     | 0.26  | 0.03    | 0.14  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.14  |  |  |
| 7        | 8      | 0.1167 | 23.46    | 5       | 5    | 13.92    | 2.6    | 7.27   | 7.27     | 0.23    | 0.65  | 0.15     | 0.38  | 0.06    | 0.20  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.20  |  |  |
| 8        | 10     | 0.1333 | 32.63    | 6       | 6    | 19.32    | 3.2    | 10.11  | 10.11    | 0.28    | 0.90  | 0.20     | 0.53  | 0.10    | 0.28  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.28  |  |  |
| 9        | 12     | 0.1500 | 43.71    | 7       | 7    | 25.84    | 3.8    | 13.50  | 13.50    | 0.33    | 1.21  | 0.24     | 0.71  | 0.15    | 0.37  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.37  |  |  |
| 10       | 15     | 0.1667 | 57.03    | 9       | 9    | 33.67    | 4.5    | 17.52  | 17.52    | 0.39    | 1.58  | 0.29     | 0.93  | 0.19    | 0.48  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.48  |  |  |
| 11       | 18     | 0.1833 | 72.91    | 10      | 10   | 43.01    | 5.4    | 22.29  | 22.29    | 0.44    | 2.02  | 0.33     | 1.19  | 0.22    | 0.62  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.62  |  |  |
| 12       | 20     | 0.2000 | 91.41    | 12      | 12   | 53.88    | 6.2    | 27.88  | 27.88    | 0.50    | 2.53  | 0.37     | 1.49  | 0.25    | 0.77  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.77  |  |  |
| 13       | 22     | 0.2167 | 112.19   | 13      | 13   | 66.09    | 7.0    | 34.21  | 34.21    | 0.53    | 3.07  | 0.42     | 1.83  | 0.29    | 0.95  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.95  |  |  |
| 14       | 23     | 0.2333 | 133.31   | 14      | 14   | 79.08    | 7.6    | 41.18  | 41.18    | 0.49    | 3.60  | 0.46     | 2.19  | 0.32    | 1.14  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 1.14  |  |  |
| 15       | 22     | 0.2500 | 151.53   | 13      | 13   | 91.81    | 7.2    | 48.25  | 48.25    | 0.62    | 4.04  | 0.50     | 2.54  | 0.35    | 1.34  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 1.34  |  |  |
| 16       | 20     | 0.2667 | 165.53   | 12      | 12   | 103.69   | 6.8    | 54.89  | 54.89    | 0.68    | 4.37  | 0.82     | 2.85  | 0.38    | 1.52  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 1.52  |  |  |
| 17       | 19     | 0.2833 | 175.62   | 11      | 11   | 114.38   | 6.3    | 61.06  | 61.06    | 0.72    | 4.61  | 1.75     | 3.13  | 0.40    | 1.69  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 1.69  |  |  |
| 18       | 17     | 0.3000 | 182.39   | 10      | 10   | 123.31   | 5.9    | 66.75  | 66.75    | 0.76    | 4.76  | 2.77     | 3.35  | 0.42    | 1.85  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 1.85  |  |  |
| 19       | 16     | 0.3167 | 186.46   | 9       | 9    | 130.40   | 5.4    | 71.99  | 71.99    | 0.81    | 4.86  | 3.69     | 3.53  | 0.44    | 1.99  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 1.99  |  |  |
| 20       | 15     | 0.3333 | 188.40   | 9       | 9    | 135.78   | 5.0    | 76.78  | 76.78    | 0.86    | 4.90  | 4.45     | 3.66  | 0.45    | 2.13  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 2.13  |  |  |
| 21       | 14     | 0.3500 | 188.74   | 8       | 8    | 139.70   | 4.6    | 81.15  | 81.15    | 0.91    | 4.91  | 5.03     | 3.76  | 0.47    | 2.25  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 2.25  |  |  |
| 22       | 13     | 0.3667 | 187.93   | 7       | 7    | 142.39   | 4.3    | 85.15  | 85.15    | 0.95    | 4.89  | 5.45     | 3.82  | 0.48    | 2.36  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 2.36  |  |  |
| 23       | 11     | 0.3833 | 186.22   | 7       | 7    | 144.05   | 4.0    | 88.80  | 88.80    | 1.00    | 4.85  | 5.71     | 3.86  | 0.49    | 2.46  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 2.46  |  |  |
| 24       | 10     | 0.4000 | 183.81   | 6       | 6    | 144.82   | 3.6    | 92.11  | 92.11    | 1.05    | 4.80  | 5.83     | 3.88  | 0.50    | 2.55  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 2.55  |  |  |
| 25       | 9      | 0.4167 | 180.91   | 6       | 6    | 144.89   | 3.3    | 95.09  | 95.09    | 1.10    | 4.73  | 5.84     | 3.88  | 0.51    | 2.63  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 2.63  |  |  |
| 26       | 9      | 0.4333 | 177.66   | 5       | 5    | 144.40   | 3.0    | 97.75  | 97.75    | 1.16    | 4.65  | 5.76     | 3.87  | 0.53    | 2.70  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 2.70  |  |  |
| 27       | 8      | 0.4500 | 174.18   | 5       | 5    | 143.48   | 2.7    | 100.11 | 100.11   | 1.21    | 4.57  | 5.62     | 3.85  | 0.61    | 2.76  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 2.76  |  |  |
| 28       | 7      | 0.4667 | 170.58   | 4       | 4    | 142.24   | 2.5    | 102.12 | 102.12   | 1.26    | 4.49  | 5.42     | 3.82  | 0.72    | 2.81  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 2.81  |  |  |
| 29       | 6      | 0.4833 | 166.94   | 4       | 4    | 140.76   | 2.3    | 103.77 | 103.77   | 1.31    | 4.40  | 5.19     | 3.78  | 0.82    | 2.86  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 2.86  |  |  |
| 30       | 6      | 0.5000 | 163.27   | 3       | 3    | 139.10   | 2.0    | 105.09 | 105.09   | 1.36    | 4.32  | 4.94     | 3.74  | 0.92    | 2.89  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 2.89  |  |  |
| 31       | 5      | 0.5167 | 159.66   | 3       | 3    | 137.32   | 1.8    | 106.10 | 106.10   | 1.41    | 4.23  | 4.67     | 3.70  | 1.00    | 2.92  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 2.92  |  |  |
| 32       | 5      | 0.5333 | 156.16   | 3       | 3    | 135.50   | 1.7    | 106.84 | 106.84   | 1.46    | 4.15  | 4.41     | 3.65  | 1.05    | 2.94  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 2.94  |  |  |
| 33       | 4      | 0.5500 | 152.77   | 2       | 2    | 133.64   | 1.5    | 107.35 | 107.35   | 1.51    | 4.07  | 4.14     | 3.61  | 1.09    | 2.95  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 2.95  |  |  |
| 34       | 4      | 0.5667 | 149.53   | 2       | 2    | 131.80   | 1.3    | 107.66 | 107.66   | 1.56    | 3.99  | 3.88     | 3.56  | 1.12    | 2.96  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 2.96  |  |  |
| 35       | 3      | 0.5833 | 146.45   | 2       | 2    | 129.99   | 1.2    | 107.81 | 107.81   | 1.60    | 3.92  | 3.64     | 3.52  | 1.13    | 2.96  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 2.96  |  |  |
| 36       | 3      | 0.6000 | 143.53   | 2       | 2    | 128.23   | 1.1    | 107.84 | 107.84   | 1.64    | 3.85  | 3.40     | 3.48  | 1.13    | 2.96  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 2.96  |  |  |
| 37       | 3      | 0.6167 | 140.77   | 2       | 2    | 126.52   | 1.0    | 107.75 | 107.75   | 1.68    | 3.78  | 3.18     | 3.43  | 1.13    | 2.96  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 2.96  |  |  |
| 38       | 2      | 0.6333 | 138.14   | 1       | 1    | 124.87   | 0.9    | 107.57 | 107.57   | 1.72    | 3.72  | 2.96     | 3.39  | 1.11    | 2.96  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 2.96  |  |  |
| 39       | 2      | 0.6500 | 135.66   | 1       | 1    | 123.27   | 0.8    | 107.31 | 107.31   | 1.76    | 3.66  | 2.76     | 3.35  | 1.09    | 2.95  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 2.95  |  |  |
| 40       | 2      | 0.6667 | 133.33   | 1       | 1    | 121.76   | 0.7    | 106.99 | 106.99   | 1.80    | 3.60  | 2.58     | 3.31  | 1.07    | 2.94  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 2.94  |  |  |
| 41       | 2      | 0.6833 | 131.14   | 1       | 1    | 120.31   | 0.7    | 10     |          |         |       |          |       |         |       |         |       |         |       |         |       |  |  |

**PIMA COUNTY REGIONAL FLOOD CONTROL DISTRICT**  
 ROUTING OF A FLOOD HYDROGRAPH THROUGH A STORMWATER DETENTION / RETENTION FACILITY

Worksheet to Input the Stage - Volume Relationship for the Facility



Rev.4/17

| <b>Corner basin with vertical walls and underground tank</b><br>Larry K. Roberts, P.E.<br>Friday, January 13, 2023<br>preliminary basin 2nd sub.xls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |               | <b>Project Address</b><br>Designer<br><b>Run Date</b><br><b>Program File Name</b> |                            |                                        |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|-----------------------------------------------------------------------------------|----------------------------|----------------------------------------|----------------------|--|--|------|----------------|---------------|---------------------------|----------------------------|----------------------------------------|------|-----|--------|---|------|---|------|------|--------|-------|------|------|------|------|--------|-------|------|------|------|------|--------|-------|------|------|------|------|--------|-------|------|------|------|------|--------|-------|------|------|------|------|--------|-------|------|------|------|------|--------|-------|------|------|--|--|--|--|--|--|--|--|--|--|--|---|--|--|--|--|--|----|--|--|--|--|--|----|--|--|--|--|--|----|--|--|--|--|--|----|--|--|--|--|--|----|--|--|--|--|--|----|--|--|--|--|--|----|--|--|--|--|--|----|--|--|--|--|--|----|--|--|--|--|--|----|--|--|--|--|--|----|--|--|--|--|--|----|--|--|--|--|--|----|--|--|--|--|--|----|--|--|--|--|--|----|--|--|--|--|--|----|--|--|--|--|--|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>GOVERNING EQUATIONS:</b> <i>Ref: HEC-1 Flood Hydrograph Package User's Manual (USACOE September 1990)</i><br>Conic method for reservoir volume:<br>$\Delta V_{1-2} = 0.33 * h * (A_1 + A_2 + (A_1 * A_2)^{0.5})$ (see "Conic Proj" tab)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |               |                                                                                   |                            |                                        |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| <b>VARIABLES:</b><br>$\Delta V_{1-2}$ incremental facility storage volume between stages $H_1$ and $H_2$<br>$h$ elevation difference between $A_1$ and $A_2$<br>$A_1, A_2$ facility surface area at stages $H_1$ and $H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |               |                                                                                   |                            |                                        |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 4.93 = max design stage (ft)<br>3.00 = max surface stage (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |               | <b>underground tank volume</b>                                                    |                            |                                        |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th colspan="3"></th> <th colspan="3">for information only</th> </tr> <tr> <th>Elev</th> <th>stage<br/>H, ft</th> <th>area<br/>A, ac</th> <th>volume<br/><math>\Delta V</math>, af</th> <th>area<br/>A, ft<sup>2</sup></th> <th>volume<br/><math>\Delta V</math>, ft<sup>3</sup></th> </tr> </thead> <tbody> <tr><td>2160</td><td>0.0</td><td>0.0496</td><td>0</td><td>2160</td><td>0</td></tr> <tr><td>2160</td><td>1.93</td><td>0.0496</td><td>0.096</td><td>2160</td><td>4162</td></tr> <tr><td>2196</td><td>2.43</td><td>0.0504</td><td>0.025</td><td>2196</td><td>1089</td></tr> <tr><td>2231</td><td>2.93</td><td>0.0512</td><td>0.025</td><td>2231</td><td>1107</td></tr> <tr><td>2265</td><td>3.43</td><td>0.0520</td><td>0.026</td><td>2265</td><td>1124</td></tr> <tr><td>2299</td><td>3.93</td><td>0.0528</td><td>0.026</td><td>2299</td><td>1141</td></tr> <tr><td>2331</td><td>4.43</td><td>0.0535</td><td>0.027</td><td>2331</td><td>1157</td></tr> <tr><td>2364</td><td>4.93</td><td>0.0543</td><td>0.027</td><td>2364</td><td>1173</td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td>9</td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td>10</td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td>11</td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td>12</td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td>13</td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td>14</td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td>15</td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td>16</td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td>17</td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td>18</td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td>19</td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td>20</td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td>21</td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td>22</td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td>23</td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td>24</td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td>25</td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td>26</td></tr> </tbody> </table> |                |               |                                                                                   |                            |                                        | for information only |  |  | Elev | stage<br>H, ft | area<br>A, ac | volume<br>$\Delta V$ , af | area<br>A, ft <sup>2</sup> | volume<br>$\Delta V$ , ft <sup>3</sup> | 2160 | 0.0 | 0.0496 | 0 | 2160 | 0 | 2160 | 1.93 | 0.0496 | 0.096 | 2160 | 4162 | 2196 | 2.43 | 0.0504 | 0.025 | 2196 | 1089 | 2231 | 2.93 | 0.0512 | 0.025 | 2231 | 1107 | 2265 | 3.43 | 0.0520 | 0.026 | 2265 | 1124 | 2299 | 3.93 | 0.0528 | 0.026 | 2299 | 1141 | 2331 | 4.43 | 0.0535 | 0.027 | 2331 | 1157 | 2364 | 4.93 | 0.0543 | 0.027 | 2364 | 1173 |  |  |  |  |  |  |  |  |  |  |  | 9 |  |  |  |  |  | 10 |  |  |  |  |  | 11 |  |  |  |  |  | 12 |  |  |  |  |  | 13 |  |  |  |  |  | 14 |  |  |  |  |  | 15 |  |  |  |  |  | 16 |  |  |  |  |  | 17 |  |  |  |  |  | 18 |  |  |  |  |  | 19 |  |  |  |  |  | 20 |  |  |  |  |  | 21 |  |  |  |  |  | 22 |  |  |  |  |  | 23 |  |  |  |  |  | 24 |  |  |  |  |  | 25 |  |  |  |  |  | 26 | <b>Note:</b> Develop stage-storage curve on this worksheet by either entering in the blue shaded column the planimetered basin areas (in acres) at various stages or by entering facility stages and corresponding incremental volumes (acre-feet, purple shaded column). Graph of the stage-storage curve shown to verify proper interpolation (purple points) of facility volume by Vol Outflow tab. You may insert rows into the middle of this table to accomodate the size of your data set; empty rows below the extent of your data will not cause a problem. Stage - Volume data must begin at stage = 0 ft with a volume of 0 af. Stage - Volume data must be entered in ascending order. Blue cells below the entered data must remain empty (highlight, right-click, clear contents). All blue cells must either be blank or must contain a number. |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               | for information only                                                              |                            |                                        |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Elev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | stage<br>H, ft | area<br>A, ac | volume<br>$\Delta V$ , af                                                         | area<br>A, ft <sup>2</sup> | volume<br>$\Delta V$ , ft <sup>3</sup> |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 2160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0            | 0.0496        | 0                                                                                 | 2160                       | 0                                      |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 2160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.93           | 0.0496        | 0.096                                                                             | 2160                       | 4162                                   |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 2196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.43           | 0.0504        | 0.025                                                                             | 2196                       | 1089                                   |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 2231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.93           | 0.0512        | 0.025                                                                             | 2231                       | 1107                                   |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 2265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.43           | 0.0520        | 0.026                                                                             | 2265                       | 1124                                   |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 2299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.93           | 0.0528        | 0.026                                                                             | 2299                       | 1141                                   |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 2331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.43           | 0.0535        | 0.027                                                                             | 2331                       | 1157                                   |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 2364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.93           | 0.0543        | 0.027                                                                             | 2364                       | 1173                                   |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                                                                                   |                            |                                        |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                                                                                   |                            | 9                                      |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                                                                                   |                            | 10                                     |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                                                                                   |                            | 11                                     |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                                                                                   |                            | 12                                     |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                                                                                   |                            | 13                                     |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                                                                                   |                            | 14                                     |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                                                                                   |                            | 15                                     |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                                                                                   |                            | 16                                     |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                                                                                   |                            | 17                                     |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                                                                                   |                            | 18                                     |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                                                                                   |                            | 19                                     |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                                                                                   |                            | 20                                     |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                                                                                   |                            | 21                                     |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                                                                                   |                            | 22                                     |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                                                                                   |                            | 23                                     |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                                                                                   |                            | 24                                     |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                                                                                   |                            | 25                                     |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                                                                                   |                            | 26                                     |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               | <b>STAGE - STORAGE CURVE</b>                                                      |                            |                                        |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |               |                                                                                   |                            |                                        |                      |  |  |      |                |               |                           |                            |                                        |      |     |        |   |      |   |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |      |      |        |       |      |      |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |  |  |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

PIMA COUNTY REGIONAL FLOOD CONTROL DISTRICT  
ROUTING OF A FLOOD HYDROGRAPH THROUGH A STORMWATER DETENTION / RETENTION FACILITY



Rev. 4/17

Worksheet to Develop the Stage - Discharge Characteristics of the Outlet Works for the Facility

| Corner basin with vertical walls and underground tank |                 |  |
|-------------------------------------------------------|-----------------|--|
| Larry K. Roberts, P.E.                                | Project Address |  |
| Friday, January 13, 2023                              | Designer        |  |
| preliminary basin 2nd sub.xls                         | Run Date        |  |

| Program File Name |
|-------------------|
|-------------------|

Note: Populate characteristics of selected outlet elements corresponding to facility outlet configuration (blue cells), or overwrite purple cells with outflows calculated outside this worksheet, as a function of the given facility stages. Storage (last column) at each stage is interpolated from stage-volume relationship (see Stage Vol tab). Do not add rows to this worksheet; it automatically divides maximum facility design stage into 100 increments to develop the volume-outflow curve.

GOVERNING EQUATIONS:

Orifice equation:  $Q_o = C * A * (2 * g * H)^{0.5}$  and see weir flow equation on "Orifice" tab

Rectangular Weir Equation:  $Q_w = C * L * H^{1.5}$

Triangular Weir Equation:  $Q_w = C * \frac{1}{3} \tan(45/2) * H^{2.0}$

Box Culvert Equation: See Box Culvert equations for Inlet Control on "RCBC" tab

0.75 stage at crest for surface basin

| ORIFICE PLATE OUTFLOW ELEMENT                                                                                                                                                            | TRIANGULAR WEIR OUTFLOW ELEMENT                                                                                    | RECTANGULAR WEIR OUTFLOW ELEMENT(S)                                                                                                                    | BOX, ROUND CULVERT OUTFLOW ELEMENT                                                                                             |                                                                                                                                  |              |                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------|
| $d_o \text{ (in)} = 3.50 \text{ diameter}$<br>$C = 0.60 \text{ disch coefficient}$<br>$E_o \text{ (ft)} = 0.15 \text{ stage @ orifice center}$<br>$N = 1 \text{ nbr identical openings}$ | $area \text{ (ft}^2\text{)} = 0.067$<br>$E_w \text{ (ft)} = 0.00$<br>$C_r = 3.00$<br>$\Theta \text{ (deg)} = 2.68$ | $Z = \text{side slope}$<br>$E_w \text{ (ft)} = \text{stage at crest}$<br>$C = \text{disch coefficient}$<br>$\Theta \text{ (deg)} = \text{notch angle}$ | $L \text{ (ft)} = 1.32$<br>$C = 3.00$<br>$E_w \text{ (ft)} = 2.68$<br>$crest length$<br>$disch coefficient$<br>$routing stage$ | $D \text{ (ft)} = \text{barrel rise, dia}$<br>$B \text{ (ft)} = \text{barrel span}$<br>$E_s \text{ (ft)} = \text{barrel invert}$ | $\# PIPES =$ | $\text{RCP}$<br>$\text{RCBC}$ |

| Stage H, ft | Orifice Weir Element(s) |                 |               |               | ROUTING RESULTS FOR DESIGN OF OUTLET WORKS |            |             |                |                    |                                                       |                            |            |             |           |
|-------------|-------------------------|-----------------|---------------|---------------|--------------------------------------------|------------|-------------|----------------|--------------------|-------------------------------------------------------|----------------------------|------------|-------------|-----------|
|             | Plate Q, cfs            | Triang 1 Q, cfs | Rect 1 Q, cfs | Rect 2 Q, cfs | Rect 3 Q, cfs                              | RCP Q, cfs | RCBC Q, cfs | Outflow O, cfs | $\Sigma$ vol S, af | Subtract 1.93 from results for surface basin          | Max Design Stage = 4.93 ft | Max Inflow | Max Outflow | Max Stage |
| 0.00        | 0.00                    |                 |               |               |                                            |            |             | 0.0            | 0.00000            | 100-Yr 23.0 cfs                                       | 13.9 cfs                   | 4.91 ft    | @ 21 min    | 14.0 cfs  |
| 0.05        | 0.00                    |                 |               |               |                                            |            |             | 0.0            | 0.0024             | 10-yr 13.6 cfs                                        | 5.8 cfs                    | 3.88 ft    | @ 25 min    | 6.7 cfs   |
| 0.10        | 0.00                    |                 |               |               |                                            |            |             | 0.0            | 0.0049             | 2-yr 7.6 cfs                                          | 1.1 cfs                    | 2.96 ft    | @ 36 min    | 2.1 cfs   |
| 0.15        | 0.00                    |                 |               |               |                                            |            |             | 0.1            | 0.0073             |                                                       |                            |            |             |           |
| 0.20        | 0.1                     |                 |               |               |                                            |            |             | 0.1            | 0.0098             |                                                       |                            |            |             |           |
| 0.25        | 0.1                     |                 |               |               |                                            |            |             | 0.1            | 0.0122             |                                                       |                            |            |             |           |
| 0.30        | 0.1                     |                 |               |               |                                            |            |             | 0.1            | 0.0147             |                                                       |                            |            |             |           |
| 0.35        | 0.1                     |                 |               |               |                                            |            |             | 0.1            | 0.0171             |                                                       |                            |            |             |           |
| 0.39        | 0.2                     |                 |               |               |                                            |            |             | 0.2            | 0.0195             |                                                       |                            |            |             |           |
| 0.44        | 0.2                     |                 |               |               |                                            |            |             | 0.2            | 0.0220             |                                                       |                            |            |             |           |
| 0.49        | 0.2                     |                 |               |               |                                            |            |             | 0.2            | 0.0244             |                                                       |                            |            |             |           |
| 0.54        | 0.2                     |                 |               |               |                                            |            |             | 0.2            | 0.0269             |                                                       |                            |            |             |           |
| 0.59        | 0.2                     |                 |               |               |                                            |            |             | 0.2            | 0.0293             |                                                       |                            |            |             |           |
| 0.64        | 0.2                     |                 |               |               |                                            |            |             | 0.2            | 0.0318             |                                                       |                            |            |             |           |
| 0.69        | 0.2                     |                 |               |               |                                            |            |             | 0.2            | 0.0342             |                                                       |                            |            |             |           |
| 0.74        | 0.2                     |                 |               |               |                                            |            |             | 0.3            | 0.0366             |                                                       |                            |            |             |           |
| 0.79        | 0.3                     |                 |               |               |                                            |            |             | 0.3            | 0.0391             |                                                       |                            |            |             |           |
| 0.84        | 0.3                     |                 |               |               |                                            |            |             | 0.3            | 0.0415             |                                                       |                            |            |             |           |
| 0.89        | 0.3                     |                 |               |               |                                            |            |             | 0.3            | 0.0440             |                                                       |                            |            |             |           |
| 0.94        | 0.3                     |                 |               |               |                                            |            |             | 0.3            | 0.0464             |                                                       |                            |            |             |           |
| 0.99        | 0.3                     |                 |               |               |                                            |            |             | 0.3            | 0.0488             |                                                       |                            |            |             |           |
| 1.04        | 0.3                     |                 |               |               |                                            |            |             | 0.3            | 0.0513             |                                                       |                            |            |             |           |
| 1.08        | 0.3                     |                 |               |               |                                            |            |             | 0.3            | 0.0537             |                                                       |                            |            |             |           |
| 1.13        | 0.3                     |                 |               |               |                                            |            |             | 0.3            | 0.0562             |                                                       |                            |            |             |           |
| 1.18        | 0.3                     |                 |               |               |                                            |            |             | 0.3            | 0.0586             |                                                       |                            |            |             |           |
| 1.23        | 0.3                     |                 |               |               |                                            |            |             | 0.3            | 0.0611             |                                                       |                            |            |             |           |
| 1.28        | 0.3                     |                 |               |               |                                            |            |             | 0.3            | 0.0635             |                                                       |                            |            |             |           |
| 1.33        | 0.4                     |                 |               |               |                                            |            |             | 0.4            | 0.0659             |                                                       |                            |            |             |           |
| 1.38        | 0.4                     |                 |               |               |                                            |            |             | 0.4            | 0.0684             |                                                       |                            |            |             |           |
| 1.43        | 0.4                     |                 |               |               |                                            |            |             | 0.4            | 0.0708             |                                                       |                            |            |             |           |
| 1.48        | 0.4                     |                 |               |               |                                            |            |             | 0.4            | 0.0733             |                                                       |                            |            |             |           |
| 1.53        | 0.4                     |                 |               |               |                                            |            |             | 0.4            | 0.0757             |                                                       |                            |            |             |           |
| 1.58        | 0.4                     |                 |               |               |                                            |            |             | 0.4            | 0.0782             |                                                       |                            |            |             |           |
| 1.63        | 0.4                     |                 |               |               |                                            |            |             | 0.4            | 0.0806             |                                                       |                            |            |             |           |
| 1.68        | 0.4                     |                 |               |               |                                            |            |             | 0.4            | 0.0830             |                                                       |                            |            |             |           |
| 1.73        | 0.4                     |                 |               |               |                                            |            |             | 0.4            | 0.0855             |                                                       |                            |            |             |           |
| 1.77        | 0.4                     |                 |               |               |                                            |            |             | 0.4            | 0.0879             |                                                       |                            |            |             |           |
| 1.82        | 0.4                     |                 |               |               |                                            |            |             | 0.4            | 0.0904             |                                                       |                            |            |             |           |
| 1.87        | 0.4                     |                 |               |               |                                            |            |             | 0.4            | 0.0928             |                                                       |                            |            |             |           |
| 1.92        | 0.4                     |                 |               |               |                                            |            |             | 0.4            | 0.0953             |                                                       |                            |            |             |           |
| 1.97        | 0.4                     |                 |               |               |                                            |            |             | 0.4            | 0.0977             |                                                       |                            |            |             |           |
| 2.02        | 0.4                     |                 |               |               |                                            |            |             | 0.4            | 0.1002             |                                                       |                            |            |             |           |
| 2.07        | 0.4                     |                 |               |               |                                            |            |             | 0.4            | 0.1026             |                                                       |                            |            |             |           |
| 2.12        | 0.5                     |                 |               |               |                                            |            |             | 0.5            | 0.1051             |                                                       |                            |            |             |           |
| 2.17        | 0.5                     |                 |               |               |                                            |            |             | 0.5            | 0.1076             |                                                       |                            |            |             |           |
| 2.22        | 0.5                     |                 |               |               |                                            |            |             | 0.5            | 0.1100             |                                                       |                            |            |             |           |
| 2.27        | 0.5                     |                 |               |               |                                            |            |             | 0.5            | 0.1125             |                                                       |                            |            |             |           |
| 2.32        | 0.5                     |                 |               |               |                                            |            |             | 0.5            | 0.1150             |                                                       |                            |            |             |           |
| 2.37        | 0.5                     |                 |               |               |                                            |            |             | 0.5            | 0.1174             |                                                       |                            |            |             |           |
| 2.41        | 0.5                     |                 |               |               |                                            |            |             | 0.5            | 0.1199             |                                                       |                            |            |             |           |
| 2.46        | 0.5                     |                 |               |               |                                            |            |             | 0.5            | 0.1224             |                                                       |                            |            |             |           |
| 2.51        | 0.5                     |                 |               |               |                                            |            |             | 0.5            | 0.1249             |                                                       |                            |            |             |           |
| 2.56        | 0.5                     |                 |               |               |                                            |            |             | 0.5            | 0.1274             |                                                       |                            |            |             |           |
| 2.61        | 0.5                     |                 |               |               |                                            |            |             | 0.5            | 0.1299             |                                                       |                            |            |             |           |
| 2.66        | 0.5                     |                 |               |               |                                            |            |             | 0.5            | 0.1324             |                                                       |                            |            |             |           |
| 2.71        | 0.5                     | 0.0             |               |               |                                            |            |             | 0.5            | 0.1349             |                                                       |                            |            |             |           |
| 2.76        | 0.5                     | 0.1             |               |               |                                            |            |             | 0.6            | 0.1374             |                                                       |                            |            |             |           |
| 2.81        | 0.5                     | 0.2             |               |               |                                            |            |             | 0.7            | 0.1399             |                                                       |                            |            |             |           |
| 2.86        | 0.5                     | 0.3             |               |               |                                            |            |             | 0.8            | 0.1424             |                                                       |                            |            |             |           |
| 2.91        | 0.5                     | 0.4             |               |               |                                            |            |             | 1.0            | 0.1449             |                                                       |                            |            |             |           |
| 2.96        | 0.5                     | 0.6             |               |               |                                            |            |             | 1.1            | 0.1474             |                                                       |                            |            |             |           |
| 3.01        | 0.5                     | 0.7             |               |               |                                            |            |             | 1.3            | 0.1500             |                                                       |                            |            |             |           |
| 3.06        | 0.5                     | 0.9             |               |               |                                            |            |             | 1.5            | 0.1525             |                                                       |                            |            |             |           |
| 3.10        | 0.6                     | 1.1             |               |               |                                            |            |             | 1.6            | 0.1551             |                                                       |                            |            |             |           |
| 3.15        | 0.6                     | 1.3             |               |               |                                            |            |             | 1.8            | 0.1576             |                                                       |                            |            |             |           |
| 3.20        | 0.6                     | 1.5             |               |               |                                            |            |             | 2.1            | 0.1602             |                                                       |                            |            |             |           |
| 3.25        | 0.6                     | 1.7             |               |               |                                            |            |             | 2.3            | 0.1627             |                                                       |                            |            |             |           |
| 3.30        | 0.6                     | 1.9             |               |               |                                            |            |             | 2.5            | 0.1652             |                                                       |                            |            |             |           |
| 3.35        | 0.6                     | 2.2             |               |               |                                            |            |             | 2.8            | 0.1678             |                                                       |                            |            |             |           |
| 3.40        | 0.6                     | 2.4             |               |               |                                            |            |             | 3.0            | 0.1703             |                                                       |                            |            |             |           |
| 3.45        | 0.6                     | 2.7             |               |               |                                            |            |             | 3.3            | 0.1729             |                                                       |                            |            |             |           |
| 3.50        | 0.6                     | 2.9             |               |               |                                            |            |             | 3.5            | 0.1754             |                                                       |                            |            |             |           |
| 3.55        | 0.6                     | 3.2             |               |               |                                            |            |             | 3.6            | 0.1781             |                                                       |                            |            |             |           |
| 3.60        | 0.6                     | 3.5             |               |               |                                            |            |             | 4.1            | 0.1806             |                                                       |                            |            |             |           |
| 3.65        | 0.6                     | 3.8             |               |               |                                            |            |             | 4.4            | 0.1832             |                                                       |                            |            |             |           |
| 3.70        | 0.6                     | 4.0             |               |               |                                            |            |             | 4.7            | 0.1858             |                                                       |                            |            |             |           |
| 3.75        | 0.6                     | 4.4             |               |               |                                            |            |             | 5.0            | 0.1884             |                                                       |                            |            |             |           |
| 3.79        | 0.6                     | 4.7             |               |               |                                            |            |             | 5.3            | 0.1909             |                                                       |                            |            |             |           |
| 3.84        | 0.6                     | 5.0             |               |               |                                            |            |             | 5.6            | 0.1935             |                                                       |                            |            |             |           |
| 3.89        | 0.6                     | 5.3             |               |               |                                            |            |             | 5.9            | 0.1961             |                                                       |                            |            |             |           |
| 3.94        | 0.6                     | 5.6             |               |               |                                            |            |             | 6.2            | 0.1987             |                                                       |                            |            |             |           |
| 3.99        | 0.6                     | 5.9             |               |               |                                            |            |             | 6.6            | 0.2013             |                                                       |                            |            |             |           |
| 4.04        | 0.6                     | 6.3             |               |               |                                            |            |             | 6.9            | 0.2039             |                                                       |                            |            |             |           |
| 4.09        | 0.6                     | 6.6             |               |               |                                            |            |             | 7.3            | 0.2066             |                                                       |                            |            |             |           |
| 4.14        | 0.6                     | 7.0             |               |               |                                            |            |             | 7.6            | 0.2092             |                                                       |                            |            |             |           |
| 4.19        | 0.6                     | 7.3             |               |               |                                            |            |             | 8.0            | 0.2118             |                                                       |                            |            |             |           |
| 4.24        | 0.7                     | 7.7             |               |               |                                            |            |             | 8.3            | 0.2144             |                                                       |                            |            |             |           |
| 4.29        | 0.7                     | 8.1             |               |               |                                            |            |             | 8.7            | 0.2170             |                                                       |                            |            |             |           |
| 4.34        | 0.7                     | 8.4             |               |               |                                            |            |             | 9.1            | 0.2196             |                                                       |                            |            |             |           |
| 4.39        | 0.7                     | 8.8             |               |               |                                            |            |             | 9.5            | 0.2223             |                                                       |                            |            |             |           |
| 4.44        | 0.7                     | 9.2             |               |               |                                            |            |             | 9.9            | 0.2249             |                                                       |                            |            |             |           |
| 4.48        | 0.7                     | 9.6             |               |               |                                            |            |             | 10.3           | 0.2276             |                                                       |                            |            |             |           |
| 4.53        | 0.7                     | 10.0            |               |               |                                            |            |             | 10.7           | 0.2302             |                                                       |                            |            |             |           |
| 4.58        | 0.7                     | 10.4            |               |               |                                            |            |             | 11.1           | 0.2328             |                                                       |                            |            |             |           |
| 4.63        | 0.7                     | 10.8            |               |               |                                            |            |             | 11.5           | 0.2355             |                                                       |                            |            |             |           |
| 4.68        | 0.7                     | 11.2            |               |               |                                            |            |             | 11.9           | 0.2382             |                                                       |                            |            |             |           |
| 4.73        | 0.7                     | 11.6            |               |               |                                            |            |             | 12.3           | 0.2408             |                                                       |                            |            |             |           |
| 4.78        | 0.7                     | 12.0            |               |               |                                            |            |             | 12.7           | 0.2434             |                                                       |                            |            |             |           |
| 4.83        | 0.7                     | 12.5            |               |               |                                            |            |             | 13.2           | 0.2461             |                                                       |                            |            |             |           |
| 4.88        | 0.7                     | 12.9            |               |               |                                            |            |             | 13.6           | 0.2488             |                                                       |                            |            |             |           |
| 4.93        | 0.7                     | 13.3            |               |               |                                            |            |             | 14.0           | 0.2514             | last two cells in cum.vol column contain non-standard |                            |            |             |           |

**PIMA COUNTY REGIONAL FLOOD CONTROL DISTRICT**  
**ROUTING OF A FLOOD HYDROGRAPH THROUGH A STORMWATER DETENTION / RETENTION FACILITY**  
**THIS TAB CONTAINS NO INPUT DATA**

Summary of Reservoir Routing of the Inflow Hydrograph using the Specified Detention Facility and Outlet Works

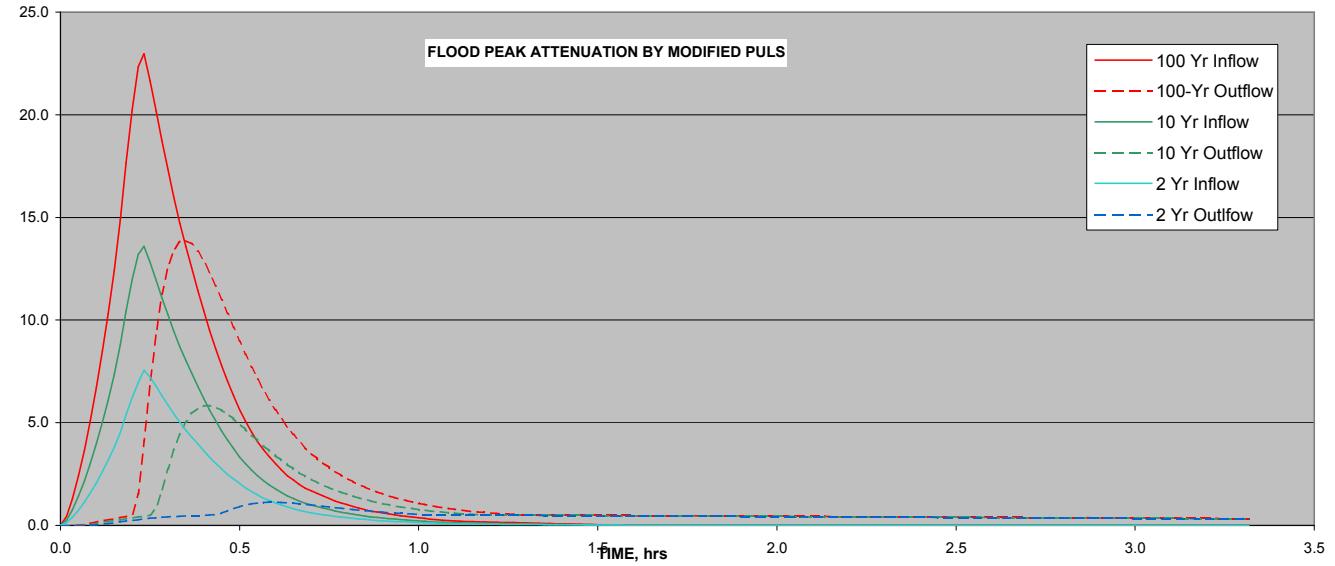


Corner basin with vertical walls and underground tank

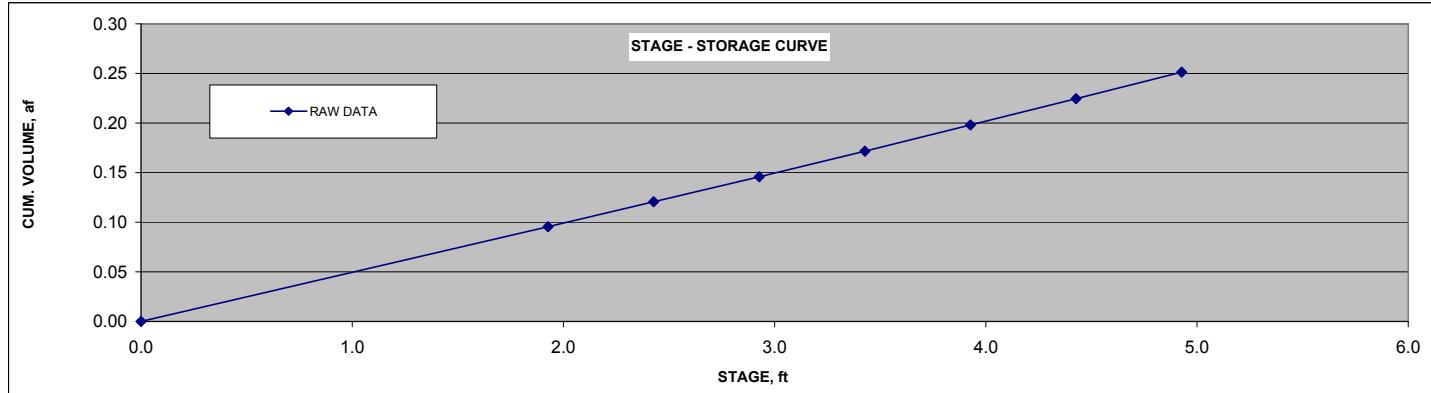
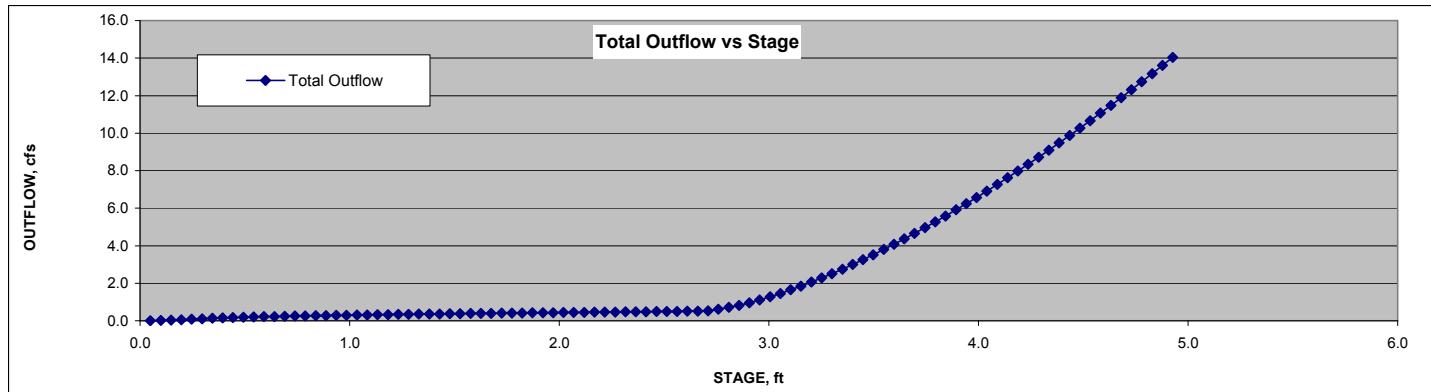
Larry K. Roberts, P.E.

Friday, January 13, 2023

preliminary basin 2nd sub.xls


Project Address

Designer



Run Date

Program File Name

Rev.04/17



| ORIFICE PLATE    |                        | TRIANGULAR WEIR   |                       |  | RECTANGULAR WEIR(S) |        |        | RCP / RCBC                 |      |
|------------------|------------------------|-------------------|-----------------------|--|---------------------|--------|--------|----------------------------|------|
| $d_o$ (in) = 3.5 | diameter               | $Z$ = 0.0         | side slope            |  | rect 1              | rect 2 | rect 3 | RCP                        | RCBC |
| $C$ (dim) = 0.60 | discharge coefficient  | $E_w$ (ft) = 0.00 | stage at weir crest   |  | $L$ (ft) = 1.3      | 0.0    | 0.0    | $D$ (ft) rise / diameter   |      |
| $N$ = 1          | nbr identical openings | $\Theta$ = 0.00   | ° notch angle         |  | $C$ = 3.00          | 0.00   | 0.00   | $B$ (ft) span              |      |
| inv (ft) = 0.00  | stage at invert        | $C_1$ = 0         | discharge coefficient |  | $E_w$ (ft) = 2.68   | 0.00   | 0.00   | $E_b$ (ft) stage at invert |      |



| RESULTS: | max inflow | max outflow | target discharge | total inflow volume   | max stage (H) * | * Max Design Stage (ft) = |      |
|----------|------------|-------------|------------------|-----------------------|-----------------|---------------------------|------|
| 100-Year | 23.0 cfs   | 13.9 cfs    | 14.0 cfs         | 24370 ft <sup>3</sup> | 0.559 af        | 4.91 ft at 21 min         | 4.93 |
| 10-Year  | 13.6 cfs   | 5.8 cfs     | 6.7 cfs          | 14415 ft <sup>3</sup> | 0.331 af        | 3.88 ft at 25 min         |      |
| 2-Year   | 7.6 cfs    | 1.1 cfs     | 2.1 cfs          | 8150 ft <sup>3</sup>  | 0.187 af        | 2.96 ft at 36 min         |      |

NOTE: IF H > MAX DESIGN STAGE,  
EXTEND STAGE-VOL DATA TO A HIGHER  
STAGE

**PIMA COUNTY REGIONAL FLOOD CONTROL DISTRICT**

ROUTING OF A FLOOD HYDROGRAPH THROUGH A STORMWATER DETENTION / RETENTION FACILITY

Worksheet to Input the Inflow Hydrograph, & Automatically Perform the Routing Calculations using the Stage-Volume data, Volume-Outflow data, & SO Working Curve



Rev. 4/17

| Corner basin with vertical walls and 1.5 * tank volume |  |                 |  |
|--------------------------------------------------------|--|-----------------|--|
| Larry K. Roberts, P.E.                                 |  | Project Address |  |
| Friday, January 13, 2023                               |  | Designer        |  |
| final basin with 1.5 tank vol 2nd sub.xls              |  | Run Date        |  |

Program File Name

**GOVERNING EQUATION:** *Ref: Applied Hydrology (Ven Te Chow, Editor 1964)*

Mass Conservation:  $0.5 * (I_1 + I_2) * \Delta t - 0.5 * (O_1 + O_2) * \Delta t = S_2 - S_1$

Isolate, divide by  $\Delta t$ :  $0.5 * (I_1 + I_2 + S_1 / \Delta t - 0.5 * O_1) = S_2 / \Delta t + 0.5 * O_2$

**VARIABLES:**  $\Delta t$  time interval between hydrograph discharges.

$I_1, I_2$  inflow rate into facility at start and end of time interval from inflow hydrograph

$O_1, O_2$  facility outflow rate at start & end of time interval

$S_1, S_2$  stormwater in storage in the facility at start and end of time interval

Note: Input  $\Delta t$ , target discharges & inflow hydrographs for 3 storm frequencies into blue cells. Outflow hydrographs (yellow) are calculated from specified outlet configuration ( vol-outflow tab) and facility geometry (Stage-Vol tab). To add rows to this worksheet, add them in roughly the center of the range, then unhide all columns and copy hidden equations into the new rows. Zero discharge within and beyond the end of the hydrograph will not affect the routing. All blue cells in this spreadsheet must either be blank (highlight, right-click, Clear Contents) or must contain a number. In addition, the Stage - Volume data must be entered in numerically ascending order. This spreadsheet does not have a "clear" button to clear all input data in one action; to accomplish this, restart Excel using a blank copy of the spreadsheet.

**RESULTS:**

|          | max inflow | max outflow | total inflow volume   | max stage (H) * | Target  |        | * Max Design Stage = 5.9 ft Surface basin design stage |
|----------|------------|-------------|-----------------------|-----------------|---------|--------|--------------------------------------------------------|
|          |            |             |                       |                 | +B2+B3  |        |                                                        |
| 100-Year | 23.0 cfs   | 12.3 cfs    | 24370 ft <sup>3</sup> | 0.559 af        | 5.67 ft | 22 min | 14.0 cfs                                               |
| 10-Year  | 13.6 cfs   | 4.2 cfs     | 14415 ft <sup>3</sup> | 0.331 af        | 4.57 ft | 28 min | 6.7 cfs                                                |
| 2-Year   | 7.6 cfs    | 0.6 cfs     | 8150 ft <sup>3</sup>  | 0.187 af        | 3.13 ft | 43 min | 2.1 cfs                                                |

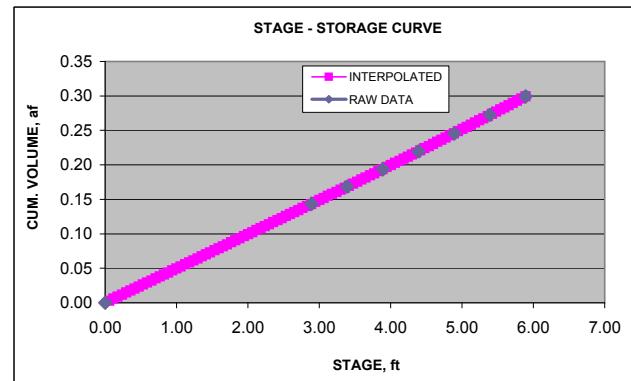
NOTE: IF H > MAX DESIGN STAGE,  
EXTEND STAGE-VOL DATA TO A  
HIGHER STAGE

\*\* target discharges not used in calculations; for informational use only

$\Delta t = 1.00$  min 0.0167 hr inflow hydrograph time interval

| 100-Year |        |        |          | 10-Year |      |          |        | 2-Year |          |         |       | 100-Year |       |         |       | 10-Year |       |         |       | 2-Year  |       |  |  |
|----------|--------|--------|----------|---------|------|----------|--------|--------|----------|---------|-------|----------|-------|---------|-------|---------|-------|---------|-------|---------|-------|--|--|
| index    | Inflow | time   | S/Δt+O/2 | Inflow  | time | S/Δt+O/2 | Inflow | time   | S/Δt+O/2 | outflow | Stage | outflow  | Stage | outflow | Stage | outflow | Stage | outflow | Stage | outflow | Stage |  |  |
| 0        | 0      | 0.0000 | 0.00     | 0       | 0    | 0.00     | 0      | 0      | 0.00     | 0.00    | 0.00  | 0.00     | 0.00  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.00  |  |  |
| 1        | 0      | 0.0167 | 0.22     | 0       | 0    | 0.13     | 0      | 0      | 0.07     | 0.00    | 0.01  | 0.00     | 0.00  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.00  |  |  |
| 2        | 1      | 0.0333 | 1.07     | 1       | 1    | 0.63     | 1      | 0.7    | 0.33     | 0.00    | 0.03  | 0.00     | 0.02  | 0.00    | 0.01  | 0.00    | 0.02  | 0.00    | 0.01  | 0.00    | 0.02  |  |  |
| 3        | 2      | 0.0500 | 2.90     | 1       | 1    | 1.72     | 0.7    | 0.89   | 0.01     | 0.08    | 0.01  | 0.05     | 0.00  | 0.01    | 0.00  | 0.05    | 0.00  | 0.02    | 0.00  | 0.05    | 0.02  |  |  |
| 4        | 4      | 0.0667 | 5.92     | 2       | 2    | 3.50     | 1.1    | 1.82   | 0.04     | 0.16    | 0.02  | 0.10     | 0.01  | 0.04    | 0.00  | 0.05    | 0.01  | 0.05    | 0.00  | 0.05    | 0.05  |  |  |
| 5        | 5      | 0.0833 | 10.24    | 3       | 3    | 6.07     | 1.6    | 3.17   | 0.10     | 0.28    | 0.04  | 0.17     | 0.09  | 0.17    | 0.00  | 0.09    | 0.01  | 0.09    | 0.00  | 0.09    | 0.05  |  |  |
| 6        | 7      | 0.1000 | 16.03    | 4       | 4    | 9.51     | 2.1    | 4.96   | 0.17     | 0.44    | 0.09  | 0.26     | 0.15  | 0.38    | 0.06  | 0.20    | 0.14  | 0.20    | 0.03  | 0.14    | 0.14  |  |  |
| 7        | 8      | 0.1167 | 23.46    | 5       | 5    | 13.91    | 2.6    | 7.27   | 0.23     | 0.65    | 0.15  | 0.38     | 0.20  | 0.53    | 0.10  | 0.28    | 0.15  | 0.28    | 0.06  | 0.20    | 0.20  |  |  |
| 8        | 10     | 0.1333 | 32.63    | 6       | 6    | 19.32    | 3.2    | 10.10  | 0.28     | 0.90    | 0.20  | 0.53     | 0.10  | 0.53    | 0.15  | 0.28    | 0.15  | 0.28    | 0.06  | 0.28    | 0.28  |  |  |
| 9        | 12     | 0.1500 | 43.71    | 7       | 7    | 25.84    | 3.8    | 13.50  | 0.33     | 1.21    | 0.24  | 0.71     | 0.15  | 0.71    | 0.15  | 0.37    | 0.15  | 0.37    | 0.05  | 0.37    | 0.37  |  |  |
| 10       | 15     | 0.1667 | 57.03    | 9       | 9    | 33.67    | 4.5    | 17.52  | 0.39     | 1.58    | 0.29  | 0.93     | 0.19  | 0.93    | 0.19  | 0.48    | 0.19  | 0.48    | 0.05  | 0.48    | 0.48  |  |  |
| 11       | 18     | 0.1833 | 72.91    | 10      | 10   | 43.01    | 5.4    | 22.29  | 0.44     | 2.02    | 0.33  | 1.19     | 0.22  | 1.19    | 0.22  | 0.62    | 0.22  | 0.62    | 0.05  | 0.62    | 0.62  |  |  |
| 12       | 20     | 0.2000 | 91.41    | 12      | 12   | 53.88    | 6.2    | 27.87  | 0.50     | 2.53    | 0.37  | 1.49     | 0.25  | 1.49    | 0.25  | 0.77    | 0.25  | 0.77    | 0.05  | 0.77    | 0.77  |  |  |
| 13       | 22     | 0.2167 | 112.19   | 13      | 13   | 66.09    | 7.0    | 34.21  | 0.55     | 3.11    | 0.42  | 1.83     | 0.29  | 1.83    | 0.29  | 0.95    | 0.29  | 0.95    | 0.05  | 0.95    | 0.95  |  |  |
| 14       | 23     | 0.2333 | 134.29   | 14      | 14   | 79.07    | 7.6    | 41.18  | 0.68     | 3.71    | 0.46  | 2.19     | 0.32  | 2.19    | 0.32  | 1.14    | 0.32  | 1.14    | 0.05  | 1.14    | 1.14  |  |  |
| 15       | 22     | 0.2500 | 155.92   | 13      | 13   | 91.81    | 7.2    | 48.25  | 0.61     | 4.26    | 0.50  | 2.54     | 0.35  | 2.54    | 0.35  | 1.34    | 0.35  | 1.34    | 0.05  | 1.34    | 1.34  |  |  |
| 16       | 20     | 0.2667 | 174.24   | 12      | 12   | 103.69   | 6.8    | 54.89  | 0.51     | 4.71    | 0.53  | 2.87     | 0.38  | 2.87    | 0.38  | 1.52    | 0.38  | 1.52    | 0.05  | 1.52    | 1.52  |  |  |
| 17       | 19     | 0.2833 | 188.60   | 11      | 11   | 114.67   | 6.3    | 61.06  | 0.41     | 5.06    | 0.56  | 3.18     | 0.40  | 3.18    | 0.40  | 1.69    | 0.40  | 1.69    | 0.05  | 1.69    | 1.69  |  |  |
| 18       | 17     | 0.3000 | 199.22   | 10      | 10   | 124.78   | 5.9    | 66.75  | 0.28     | 5.31    | 0.59  | 3.45     | 0.42  | 3.45    | 0.42  | 1.85    | 0.42  | 1.85    | 0.05  | 1.85    | 1.85  |  |  |
| 19       | 16     | 0.3167 | 206.60   | 9       | 9    | 134.05   | 5.4    | 71.98  | 0.20     | 5.48    | 0.67  | 3.70     | 0.44  | 3.70    | 0.44  | 1.99    | 0.44  | 1.99    | 0.05  | 1.99    | 1.99  |  |  |
| 20       | 15     | 0.3333 | 211.29   | 9       | 9    | 142.45   | 5.0    | 76.78  | 0.15     | 5.59    | 0.87  | 4.51     | 0.51  | 4.51    | 0.51  | 2.13    | 0.51  | 2.13    | 0.05  | 2.13    | 2.13  |  |  |
| 21       | 14     | 0.3500 | 213.89   | 8       | 8    | 149.60   | 4.6    | 81.15  | 0.10     | 5.65    | 1.90  | 4.10     | 0.47  | 4.10    | 0.47  | 2.25    | 0.47  | 2.25    | 0.05  | 2.25    | 2.25  |  |  |
| 22       | 13     | 0.3667 | 214.90   | 7       | 7    | 155.43   | 4.3    | 85.14  | 0.05     | 5.67    | 2.55  | 4.25     | 0.48  | 4.25    | 0.48  | 2.36    | 0.48  | 2.36    | 0.05  | 2.36    | 2.36  |  |  |
| 23       | 11     | 0.3833 | 214.65   | 7       | 7    | 159.98   | 4.0    | 88.80  | 0.02     | 5.67    | 3.11  | 4.37     | 0.49  | 4.37    | 0.49  | 2.46    | 0.49  | 2.46    | 0.05  | 2.46    | 2.46  |  |  |
| 24       | 10     | 0.4000 | 213.40   | 6       | 6    | 163.35   | 3.6    | 92.11  | 0.01     | 5.64    | 3.55  | 4.45     | 0.50  | 4.45    | 0.50  | 2.55    | 0.50  | 2.55    | 0.05  | 2.55    | 2.55  |  |  |
| 25       | 9      | 0.4167 | 211.41   | 6       | 6    | 165.70   | 3.3    | 95.08  | 0.01     | 5.59    | 3.87  | 4.51     | 0.51  | 4.51    | 0.51  | 2.63    | 0.51  | 2.63    | 0.05  | 2.63    | 2.63  |  |  |
| 26       | 9      | 0.4333 | 208.89   | 5       | 5    | 167.18   | 3.0    | 97.75  | 0.01     | 5.54    | 4.07  | 4.54     | 0.52  | 4.54    | 0.52  | 2.71    | 0.52  | 2.71    | 0.05  | 2.71    | 2.71  |  |  |
| 27       | 8      | 0.4500 | 205.99   | 5       | 5    | 167.95   | 2.7    | 100.12 | 0.01     | 5.47    | 4.18  | 4.56     | 0.52  | 4.56    | 0.52  | 2.77    | 0.52  | 2.77    | 0.05  | 2.77    | 2.77  |  |  |
| 28       | 7      | 0.4667 | 202.84   | 4       | 4    | 168.14   | 2.5    | 102.21 | 0.01     | 5.40    | 4.21  | 4.57     | 0.53  | 4.57    | 0.53  | 2.83    | 0.53  | 2.83    | 0.05  | 2.83    | 2.83  |  |  |
| 29       | 6      | 0.4833 | 199.56   | 4       | 4    | 167.88   | 2.3    | 104.06 | 0.01     | 5.32    | 4.17  | 4.56     | 0.53  | 4.56    | 0.53  | 2.88    | 0.53  | 2.88    | 0.05  | 2.88    | 2.88  |  |  |
| 30       | 6      | 0.5000 | 196.18   | 3       | 3    | 167.24   | 2.0    | 105.67 | 0.01     | 5.24    | 4.08  | 4.54     | 0.54  | 4.54    | 0.54  | 2.93    | 0.54  | 2.93    | 0.05  | 2.93    | 2.93  |  |  |
| 31       | 5      | 0.5167 | 192.80   | 3       | 3    | 166.32   | 1.8    | 107.06 | 0.01     | 5.16    | 3.95  | 4.52     | 0.54  | 4.52    | 0.54  | 2.97    | 0.54  | 2.97    | 0.05  | 2.97    | 2.97  |  |  |
| 32       | 5      | 0.5333 | 189.48   | 3       | 3    | 165.22   | 1.7    | 108.26 | 0.01     | 5.08    | 3.80  | 4.49     | 0.54  | 4.49    | 0.54  | 3.00    | 0.54  | 3.00    | 0.05  | 3.00    | 3.00  |  |  |
| 33       | 4      | 0.5500 | 186.23   | 2       | 2    | 163.97   | 1.5    | 109.28 | 0.01     | 5.00    | 3.63  | 4.46     | 0.55  | 4.46    | 0.55  | 3.03    | 0.55  | 3.03    | 0.05  | 3.03    | 3.03  |  |  |
| 34       | 4      | 0.5667 | 183.10   | 2       | 2    | 162.63   | 1.3    | 110.14 | 0.01     | 4.93    | 3.45  | 4.43     | 0.55  | 4.43    | 0.55  | 3.05    | 0.55  | 3.05    | 0.05  | 3.05    | 3.05  |  |  |
| 35       | 3      | 0.5833 | 180.12   | 2       | 2    | 161.26   | 1.2    | 110.87 | 0.01     | 4.86    | 3.27  | 4.40     | 0.55  | 4.40    | 0.55  | 3.07    | 0.55  | 3.07    | 0.05  | 3.07    | 3.07  |  |  |
| 36       | 3      | 0.6000 | 177.27   | 2       | 2    | 159.86   | 1.1    | 111.47 | 0.01     | 4.79    | 3.09  | 4.36     | 0.55  | 4.36    | 0.55  | 3.09    | 0.55  | 3.09    | 0.05  | 3.09    | 3.09  |  |  |
| 37       | 3      | 0.6167 | 174.56   | 2       | 2    | 158.46   | 1.0    | 111.96 | 0.01     | 4.72    | 2.92  | 4.33     | 0.55  | 4.33    | 0.55  | 3.10    | 0.55  | 3.10    | 0.05  | 3.10    | 3.10  |  |  |
| 38       | 2      | 0.6333 | 171.98   | 1       | 1    | 157.06   | 0.9    | 112.36 | 0.01     | 4.66    | 2.74  | 4.29     | 0.55  | 4.29    | 0.55  | 3.11    | 0.55  | 3.11    | 0.05  | 3.11    | 3.11  |  |  |
| 39       | 2      | 0.6500 | 169.53   | 1       | 1    | 155.68   | 0.8    | 112.66 | 0.01     | 4.41    | 2.60  | 4.26     | 0.55  | 4.26    | 0.55  | 3.12    | 0.55  | 3.12    | 0.05  | 3.12    | 3.12  |  |  |
| 40       | 2      | 0.6667 | 167.23   | 1       | 1    | 154.35   | 0.7    | 112.87 | 0.01     | 4.34    | 2.42  | 4.22     | 0.56  | 4.22    | 0.56  | 3.13    | 0.56  | 3.13    | 0.05  | 3.13    | 3.13  |  |  |
| 41       | 2      | 0.6833 | 165.05   | 1       | 1    | 153.05   | 0.7    | 113    |          |         |       |          |       |         |       |         |       |         |       |         |       |  |  |

**PIMA COUNTY REGIONAL FLOOD CONTROL DISTRICT**  
 ROUTING OF A FLOOD HYDROGRAPH THROUGH A STORMWATER DETENTION / RETENTION FACILITY


Worksheet to Input the Stage - Volume Relationship for the Facility



Rev.4/17

| <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 70%;">Corner basin with vertical walls and 1.5 * tank volume</td> <td style="width: 30%;">Project Address</td> </tr> <tr> <td>Larry K. Roberts, P.E.</td> <td>Designer</td> </tr> <tr> <td>Friday, January 13, 2023</td> <td>Run Date</td> </tr> <tr> <td>final basin with 1.5 tank vol 2nd sub.xls</td> <td>Program File Name</td> </tr> </table>                             | Corner basin with vertical walls and 1.5 * tank volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project Address   | Larry K. Roberts, P.E.                                                               | Designer                      | Friday, January 13, 2023                                       | Run Date                        | final basin with 1.5 tank vol 2nd sub.xls                         | Program File Name | <b>GOVERNING EQUATIONS:</b> <i>Ref: HEC-1 Flood Hydrograph Package User's Manual (USACOE September 1990)</i><br>Conic method for reservoir volume:<br>$\Delta V_{1-2} = 0.33 * h * (A_1 + A_2 + (A_1 * A_2)^{0.5})$ (see "Conic Proj" tab) |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|---|------|---|---|---|---|------|--------|-------|------|------|------|-------|---|------|--------|-------|------|------|------|-------|---|------|--------|-------|------|------|------|-------|---|------|--------|-------|------|------|------|-------|---|------|--------|-------|------|------|-------|-------|---|------|--------|-------|------|------|-------|-------|---|------|--------|-------|------|------|-------|-------|---|--|--|--|--|--|--|---|--|--|--|--|--|--|--|----|--|--|--|--|--|--|--|----|--|--|--|--|--|--|--|----|--|--|--|--|--|--|--|----|--|--|--|--|--|--|--|----|--|--|--|--|--|--|--|----|--|--|--|--|--|--|--|----|--|--|--|--|--|--|--|----|--|--|--|--|--|--|--|----|--|--|--|--|--|--|--|----|--|--|--|--|--|--|--|----|--|--|--|--|--|--|--|----|--|--|--|--|--|--|--|----|--|--|--|--|--|--|--|----|--|--|--|--|--|--|--|----|--|--|--|--|--|--|--|----|--|--|--|--|--|--|--|----|--|
| Corner basin with vertical walls and 1.5 * tank volume                                                                                                                                                                                                                                                                                                                                                                                                                   | Project Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                      |                               |                                                                |                                 |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
| Larry K. Roberts, P.E.                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Designer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                      |                               |                                                                |                                 |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
| Friday, January 13, 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Run Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                      |                               |                                                                |                                 |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
| final basin with 1.5 tank vol 2nd sub.xls                                                                                                                                                                                                                                                                                                                                                                                                                                | Program File Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                                                                      |                               |                                                                |                                 |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
| <b>VARIABLES:</b> <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 10%;">ΔV<sub>1-2</sub></td> <td>incremental facility storage volume between stages H<sub>1</sub> and H<sub>2</sub></td> </tr> <tr> <td>h</td> <td>elevation difference between A<sub>1</sub> and A<sub>2</sub></td> </tr> <tr> <td>A<sub>1</sub>, A<sub>2</sub></td> <td>facility surface area at stages H<sub>1</sub> and H<sub>2</sub></td> </tr> </table> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ΔV <sub>1-2</sub> | incremental facility storage volume between stages H <sub>1</sub> and H <sub>2</sub> | h                             | elevation difference between A <sub>1</sub> and A <sub>2</sub> | A <sub>1</sub> , A <sub>2</sub> | facility surface area at stages H <sub>1</sub> and H <sub>2</sub> |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
| ΔV <sub>1-2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                        | incremental facility storage volume between stages H <sub>1</sub> and H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                      |                               |                                                                |                                 |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
| h                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | elevation difference between A <sub>1</sub> and A <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                                                                      |                               |                                                                |                                 |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
| A <sub>1</sub> , A <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                          | facility surface area at stages H <sub>1</sub> and H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                                                                      |                               |                                                                |                                 |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
| 5.89 = max design stage (ft)<br>3.00 = max surface stage (ft)                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                      |                               |                                                                |                                 |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
| for information only                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                      |                               |                                                                |                                 |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
| Elev<br>2160<br>2160<br>2196<br>2231<br>2265<br>2299<br>2331<br>2364                                                                                                                                                                                                                                                                                                                                                                                                     | <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="width: 10%;">stage<br/>H, ft</th> <th style="width: 10%;">area<br/>A, ac</th> <th style="width: 10%;">volume<br/>ΔV, af</th> <th style="width: 10%;">area<br/>A, ft<sup>2</sup></th> <th style="width: 10%;">volume<br/>ΔV, ft<sup>3</sup></th> <th style="width: 10%;">Σ ΔV<br/>S, ft<sup>3</sup></th> <th style="width: 10%;">Σ ΔV<br/>S, af</th> <th style="width: 10%;">index for<br/>interpolation</th> </tr> </thead> <tbody> <tr><td>0.0</td><td>0.0496</td><td>0</td><td>2160</td><td>0</td><td>0</td><td>0</td><td>1</td></tr> <tr><td>2.89</td><td>0.0496</td><td>0.143</td><td>2160</td><td>6243</td><td>6243</td><td>0.143</td><td>2</td></tr> <tr><td>3.39</td><td>0.0504</td><td>0.025</td><td>2196</td><td>1089</td><td>7332</td><td>0.168</td><td>3</td></tr> <tr><td>3.89</td><td>0.0512</td><td>0.025</td><td>2231</td><td>1107</td><td>8438</td><td>0.194</td><td>4</td></tr> <tr><td>4.39</td><td>0.0520</td><td>0.026</td><td>2265</td><td>1124</td><td>9562</td><td>0.220</td><td>5</td></tr> <tr><td>4.89</td><td>0.0528</td><td>0.026</td><td>2299</td><td>1141</td><td>10703</td><td>0.246</td><td>6</td></tr> <tr><td>5.39</td><td>0.0535</td><td>0.027</td><td>2331</td><td>1157</td><td>11860</td><td>0.272</td><td>7</td></tr> <tr><td>5.89</td><td>0.0543</td><td>0.027</td><td>2364</td><td>1173</td><td>13034</td><td>0.299</td><td>8</td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td><td>9</td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td><td>10</td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td><td>11</td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td><td>12</td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td><td>13</td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td><td>14</td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td><td>15</td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td><td>16</td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td><td>17</td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td><td>18</td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td><td>19</td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td><td>20</td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td><td>21</td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td><td>22</td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td><td>23</td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td><td>24</td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td><td>25</td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td><td>26</td><td></td></tr> </tbody> </table> | stage<br>H, ft    | area<br>A, ac                                                                        | volume<br>ΔV, af              | area<br>A, ft <sup>2</sup>                                     | volume<br>ΔV, ft <sup>3</sup>   | Σ ΔV<br>S, ft <sup>3</sup>                                        | Σ ΔV<br>S, af     | index for<br>interpolation                                                                                                                                                                                                                 | 0.0 | 0.0496 | 0 | 2160 | 0 | 0 | 0 | 1 | 2.89 | 0.0496 | 0.143 | 2160 | 6243 | 6243 | 0.143 | 2 | 3.39 | 0.0504 | 0.025 | 2196 | 1089 | 7332 | 0.168 | 3 | 3.89 | 0.0512 | 0.025 | 2231 | 1107 | 8438 | 0.194 | 4 | 4.39 | 0.0520 | 0.026 | 2265 | 1124 | 9562 | 0.220 | 5 | 4.89 | 0.0528 | 0.026 | 2299 | 1141 | 10703 | 0.246 | 6 | 5.39 | 0.0535 | 0.027 | 2331 | 1157 | 11860 | 0.272 | 7 | 5.89 | 0.0543 | 0.027 | 2364 | 1173 | 13034 | 0.299 | 8 |  |  |  |  |  |  | 9 |  |  |  |  |  |  |  | 10 |  |  |  |  |  |  |  | 11 |  |  |  |  |  |  |  | 12 |  |  |  |  |  |  |  | 13 |  |  |  |  |  |  |  | 14 |  |  |  |  |  |  |  | 15 |  |  |  |  |  |  |  | 16 |  |  |  |  |  |  |  | 17 |  |  |  |  |  |  |  | 18 |  |  |  |  |  |  |  | 19 |  |  |  |  |  |  |  | 20 |  |  |  |  |  |  |  | 21 |  |  |  |  |  |  |  | 22 |  |  |  |  |  |  |  | 23 |  |  |  |  |  |  |  | 24 |  |  |  |  |  |  |  | 25 |  |  |  |  |  |  |  | 26 |  |
| stage<br>H, ft                                                                                                                                                                                                                                                                                                                                                                                                                                                           | area<br>A, ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | volume<br>ΔV, af  | area<br>A, ft <sup>2</sup>                                                           | volume<br>ΔV, ft <sup>3</sup> | Σ ΔV<br>S, ft <sup>3</sup>                                     | Σ ΔV<br>S, af                   | index for<br>interpolation                                        |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                 | 2160                                                                                 | 0                             | 0                                                              | 0                               | 1                                                                 |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
| 2.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.143             | 2160                                                                                 | 6243                          | 6243                                                           | 0.143                           | 2                                                                 |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
| 3.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.025             | 2196                                                                                 | 1089                          | 7332                                                           | 0.168                           | 3                                                                 |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
| 3.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.025             | 2231                                                                                 | 1107                          | 8438                                                           | 0.194                           | 4                                                                 |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
| 4.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.026             | 2265                                                                                 | 1124                          | 9562                                                           | 0.220                           | 5                                                                 |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
| 4.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.026             | 2299                                                                                 | 1141                          | 10703                                                          | 0.246                           | 6                                                                 |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
| 5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.027             | 2331                                                                                 | 1157                          | 11860                                                          | 0.272                           | 7                                                                 |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
| 5.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.027             | 2364                                                                                 | 1173                          | 13034                                                          | 0.299                           | 8                                                                 |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                      |                               |                                                                | 9                               |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                      |                               |                                                                | 10                              |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                      |                               |                                                                | 11                              |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                      |                               |                                                                | 12                              |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                      |                               |                                                                | 13                              |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                      |                               |                                                                | 14                              |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                      |                               |                                                                | 15                              |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                      |                               |                                                                | 16                              |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                      |                               |                                                                | 17                              |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                      |                               |                                                                | 18                              |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                      |                               |                                                                | 19                              |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                      |                               |                                                                | 20                              |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                      |                               |                                                                | 21                              |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                      |                               |                                                                | 22                              |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                      |                               |                                                                | 23                              |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                      |                               |                                                                | 24                              |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                      |                               |                                                                | 25                              |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                      |                               |                                                                | 26                              |                                                                   |                   |                                                                                                                                                                                                                                            |     |        |   |      |   |   |   |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |      |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |      |        |       |      |      |       |       |   |  |  |  |  |  |  |   |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |    |  |

**Note:** Develop stage-storage curve on this worksheet by either entering in the blue shaded column the planimetered basin areas (in acres) at various stages or by entering facility stages and corresponding incremental volumes (acre-feet, purple shaded column). Graph of the stage-storage curve shown to verify proper interpolation (purple points) of facility volume by Vol Outflow tab. You may insert rows into the middle of this table to accomodate the size of your data set; empty rows below the extent of your data will not cause a problem. Stage - Volume data must begin at stage = 0 ft with a volume of 0 af. Stage - Volume data must be entered in ascending order. Blue cells below the entered data must remain empty (highlight, right-click, clear contents). All blue cells must either be blank or must contain a number.



PIMA COUNTY REGIONAL FLOOD CONTROL DISTRICT  
ROUTING OF A FLOOD HYDROGRAPH THROUGH A STORMWATER DETENTION / RETENTION FACILITY



Rev. 4/17

Worksheet to Develop the Stage - Discharge Characteristics of the Outlet Works for the Facility

|                                                         |
|---------------------------------------------------------|
| Corner basin with vertical walls and 1.5' * tank volume |
| Larry K. Roberts, P.E.                                  |
| Friday, January 13, 2023                                |
| final basin with 1.5 tank vol 2nd sub.xls               |

Project Address  
Designer  
Run Date  
Program File Name

Note: Populate characteristics of selected outflow elements corresponding to facility outlet configuration (blue cells), or overwrite purple cells with outflows calculated outside this worksheet, as a function of the given facility stages. Storage (last column) at each stage is interpolated from stage-volume relationship (see Stage Vol tab). Do not add rows to this worksheet; it automatically divides maximum facility design stage into 100 increments to develop the volume-outflow curve.

GOVERNING EQUATIONS:

Orifice equation:  $Q_o = C * A * (2 * g * H)^{0.5}$  and see weir flow equation on "Orifice" tab

Rectangular Weir Equation:  $Q_w = C * L * H^{1.5}$

Triangular Weir Equation:  $Q_w = C * \frac{1}{3} \tan(45/2) * H^{2.2}$

Box Culvert Equation: See Box Culvert equations for Inlet Control on "RCBC" tab

0.75 stage at crest for surface basin

| ORIFICE PLATE OUTFLOW ELEMENT |                                               |
|-------------------------------|-----------------------------------------------|
| $d_o$ (in) =                  | 3.50 diameter area (ft <sup>2</sup> ) = 0.067 |
| $C$ =                         | 0.60 disch coefficient                        |
| $E_o$ (ft) =                  | 0.15 stage @ orifice center inv (in) = 0.00   |
| $N$ =                         | 1 nbr identical openings inv (ft) = 0.000     |

| TRIANGULAR WEIR OUTFLOW ELEMENT |                   |
|---------------------------------|-------------------|
| $Z$ =                           | side slope        |
| $E_w$ (ft) =                    | stage at crest    |
| $C_r$ =                         | disch coefficient |
| $\Theta$ (deg) =                | notch angle       |

| RECTANGULAR WEIR OUTFLOW ELEMENT(S) |        | BOX, ROUND CULVERT OUTFLOW ELEMENT |              |
|-------------------------------------|--------|------------------------------------|--------------|
| rect 1                              | rect 2 | rect 3                             |              |
| $L$ (ft) =                          | 1.32   | crest length                       | $D$ (ft) =   |
| $C$ =                               | 3.00   | disch coefficient                  | $B$ (ft) =   |
| $E_w$ (ft) =                        | 3.64   | routing stage                      | $E_s$ (ft) = |
|                                     |        |                                    | # PIPES =    |

| Stage | Orifice | Triang 1     | Rect 1 | Rect 2 | Rect 3 | RCP    | RCBC   | Outflow | $\Sigma$ vol |
|-------|---------|--------------|--------|--------|--------|--------|--------|---------|--------------|
| H, ft |         | Plate Q, cfs | O, cfs  | S, af        |
| 0.00  |         |              |        |        |        |        |        | 0.0     | 0.00000      |
| 0.06  | 0.0     |              |        |        |        |        |        | 0.0     | 0.0029       |
| 0.12  | 0.0     |              |        |        |        |        |        | 0.0     | 0.0059       |
| 0.18  | 0.0     |              |        |        |        |        |        | 0.0     | 0.0088       |
| 0.24  | 0.1     |              |        |        |        |        |        | 0.1     | 0.0117       |
| 0.30  | 0.1     |              |        |        |        |        |        | 0.1     | 0.0146       |
| 0.35  | 0.1     |              |        |        |        |        |        | 0.1     | 0.0175       |
| 0.41  | 0.2     |              |        |        |        |        |        | 0.2     | 0.0204       |
| 0.47  | 0.2     |              |        |        |        |        |        | 0.2     | 0.0234       |
| 0.53  | 0.2     |              |        |        |        |        |        | 0.2     | 0.0263       |
| 0.59  | 0.2     |              |        |        |        |        |        | 0.2     | 0.0292       |
| 0.65  | 0.2     |              |        |        |        |        |        | 0.2     | 0.0321       |
| 0.71  | 0.2     |              |        |        |        |        |        | 0.2     | 0.0351       |
| 0.77  | 0.3     |              |        |        |        |        |        | 0.3     | 0.0380       |
| 0.83  | 0.3     |              |        |        |        |        |        | 0.3     | 0.0409       |
| 0.88  | 0.3     |              |        |        |        |        |        | 0.3     | 0.0438       |
| 0.94  | 0.3     |              |        |        |        |        |        | 0.3     | 0.0468       |
| 1.00  | 0.3     |              |        |        |        |        |        | 0.3     | 0.0496       |
| 1.06  | 0.3     |              |        |        |        |        |        | 0.3     | 0.0526       |
| 1.12  | 0.3     |              |        |        |        |        |        | 0.3     | 0.0555       |
| 1.18  | 0.3     |              |        |        |        |        |        | 0.3     | 0.0584       |
| 1.24  | 0.3     |              |        |        |        |        |        | 0.3     | 0.0613       |
| 1.30  | 0.3     |              |        |        |        |        |        | 0.3     | 0.0643       |
| 1.36  | 0.4     |              |        |        |        |        |        | 0.4     | 0.0672       |
| 1.41  | 0.4     |              |        |        |        |        |        | 0.4     | 0.0701       |
| 1.47  | 0.4     |              |        |        |        |        |        | 0.4     | 0.0730       |
| 1.53  | 0.4     |              |        |        |        |        |        | 0.4     | 0.0760       |
| 1.59  | 0.4     |              |        |        |        |        |        | 0.4     | 0.0789       |
| 1.65  | 0.4     |              |        |        |        |        |        | 0.4     | 0.0818       |
| 1.71  | 0.4     |              |        |        |        |        |        | 0.4     | 0.0847       |
| 1.77  | 0.4     |              |        |        |        |        |        | 0.4     | 0.0876       |
| 1.83  | 0.4     |              |        |        |        |        |        | 0.4     | 0.0905       |
| 1.89  | 0.4     |              |        |        |        |        |        | 0.4     | 0.0935       |
| 1.94  | 0.4     |              |        |        |        |        |        | 0.4     | 0.0964       |
| 2.00  | 0.4     |              |        |        |        |        |        | 0.4     | 0.0993       |
| 2.06  | 0.4     |              |        |        |        |        |        | 0.4     | 0.1022       |
| 2.12  | 0.5     |              |        |        |        |        |        | 0.5     | 0.1052       |
| 2.18  | 0.5     |              |        |        |        |        |        | 0.5     | 0.1081       |
| 2.24  | 0.5     |              |        |        |        |        |        | 0.5     | 0.1110       |
| 2.30  | 0.5     |              |        |        |        |        |        | 0.5     | 0.1139       |
| 2.36  | 0.5     |              |        |        |        |        |        | 0.5     | 0.1168       |
| 2.42  | 0.5     |              |        |        |        |        |        | 0.5     | 0.1197       |
| 2.47  | 0.5     |              |        |        |        |        |        | 0.5     | 0.1227       |
| 2.53  | 0.5     |              |        |        |        |        |        | 0.5     | 0.1256       |
| 2.59  | 0.5     |              |        |        |        |        |        | 0.5     | 0.1285       |
| 2.65  | 0.5     |              |        |        |        |        |        | 0.5     | 0.1314       |
| 2.71  | 0.5     |              |        |        |        |        |        | 0.5     | 0.1344       |
| 2.77  | 0.5     |              |        |        |        |        |        | 0.5     | 0.1373       |
| 2.83  | 0.5     |              |        |        |        |        |        | 0.5     | 0.1402       |
| 2.89  | 0.5     |              |        |        |        |        |        | 0.5     | 0.1431       |
| 2.95  | 0.5     |              |        |        |        |        |        | 0.5     | 0.1460       |
| 3.00  | 0.5     |              |        |        |        |        |        | 0.5     | 0.1490       |
| 3.06  | 0.5     |              |        |        |        |        |        | 0.5     | 0.1519       |
| 3.12  | 0.6     |              |        |        |        |        |        | 0.6     | 0.1549       |
| 3.18  | 0.6     | 0.0          |        |        |        |        |        | 0.6     | 0.1578       |
| 3.24  | 0.6     | 0.1          |        |        |        |        |        | 0.6     | 0.1608       |
| 3.30  | 0.6     | 0.2          |        |        |        |        |        | 0.6     | 0.1637       |
| 3.36  | 0.6     | 0.3          |        |        |        |        |        | 0.6     | 0.1667       |
| 3.42  | 0.6     | 0.5          |        |        |        |        |        | 0.6     | 0.1696       |
| 3.48  | 0.6     | 0.7          |        |        |        |        |        | 0.6     | 0.1726       |
| 3.54  | 0.6     | 0.9          |        |        |        |        |        | 0.6     | 0.1756       |
| 3.59  | 0.6     |              |        |        |        |        |        | 0.6     | 0.1786       |
| 3.65  | 0.6     |              | 0.0    |        |        |        |        | 0.6     | 0.1816       |
| 3.71  | 0.6     |              | 0.1    |        |        |        |        | 0.7     | 0.1846       |
| 3.77  | 0.6     |              | 0.2    |        |        |        |        | 0.8     | 0.1876       |
| 3.83  | 0.6     |              | 0.3    |        |        |        |        | 0.9     | 0.1906       |
| 3.89  | 0.6     |              | 0.5    |        |        |        |        | 1.1     | 0.1936       |
| 3.95  | 0.6     |              | 0.7    |        |        |        |        | 1.3     | 0.1966       |
| 4.01  | 0.6     |              | 0.9    |        |        |        |        | 1.5     | 0.1997       |
| 4.07  | 0.6     |              | 1.1    |        |        |        |        | 1.7     | 0.2027       |
| 4.13  | 0.6     |              | 1.3    |        |        |        |        | 2.0     | 0.2057       |
| 4.19  | 0.6     |              | 1.6    |        |        |        |        | 2.2     | 0.2088       |
| 4.24  | 0.7     |              | 1.8    |        |        |        |        | 2.5     | 0.2118       |
| 4.30  | 0.7     |              | 2.1    |        |        |        |        | 2.6     | 0.2148       |
| 4.36  | 0.7     |              | 2.4    |        |        |        |        | 3.1     | 0.2179       |
| 4.42  | 0.7     |              | 2.7    |        |        |        |        | 3.4     | 0.2209       |
| 4.49  | 0.7     |              | 3.0    |        |        |        |        | 3.7     | 0.2240       |
| 4.54  | 0.7     |              | 3.4    |        |        |        |        | 4.0     | 0.2271       |
| 4.60  | 0.7     |              | 3.7    |        |        |        |        | 4.4     | 0.2302       |
| 4.65  | 0.7     |              | 4.0    |        |        |        |        | 4.7     | 0.2333       |
| 4.71  | 0.7     |              | 4.4    |        |        |        |        | 5.1     | 0.2364       |
| 4.77  | 0.7     |              | 4.8    |        |        |        |        | 5.5     | 0.2395       |
| 4.83  | 0.7     |              | 5.1    |        |        |        |        | 5.8     | 0.2426       |
| 4.89  | 0.7     |              | 5.5    |        |        |        |        | 6.2     | 0.2457       |
| 4.95  | 0.7     |              | 5.9    |        |        |        |        | 6.6     | 0.2487       |
| 5.01  | 0.7     |              | 6.3    |        |        |        |        | 7.0     | 0.2519       |
| 5.07  | 0.7     |              | 6.7    |        |        |        |        | 7.5     | 0.2550       |
| 5.13  | 0.7     |              | 7.2    |        |        |        |        | 7.9     | 0.2581       |
| 5.18  | 0.7     |              | 7.6    |        |        |        |        | 8.3     | 0.2613       |
| 5.24  | 0.7     |              | 8.0    |        |        |        |        | 8.8     | 0.2644       |
| 5.30  | 0.7     |              | 8.5    |        |        |        |        | 9.2     | 0.2675       |
| 5.36  | 0.7     |              | 8.9    |        |        |        |        | 9.7     | 0.2707       |
| 5.42  | 0.7     |              | 9.4    |        |        |        |        | 10.1    | 0.2738       |
| 5.48  | 0.7     |              | 9.9    |        |        |        |        | 10.6    | 0.2770       |
| 5.54  | 0.7     |              | 10.4   |        |        |        |        | 11.1    | 0.2802       |
| 5.60  | 0.8     |              | 10.8   |        |        |        |        | 11.6    | 0.2833       |
| 5.66  | 0.8     |              | 11.3   |        |        |        |        | 12.1    | 0.2865       |
| 5.71  | 0.8     |              | 11.8   |        |        |        |        | 12.6    | 0.2897       |
| 5.77  | 0.8     |              | 12.3   |        |        |        |        | 13.1    | 0.2929       |
| 5.83  | 0.8     |              | 12.9   |        |        |        |        | 13.6    | 0.2960       |
| 5.89  | 0.8     |              | 13.4   |        |        |        |        | 14.1    | 0.2992       |
| 6.01  | 0.8     |              | 14.4   |        |        |        |        | 15.2    | 0.3056       |

last two cells in cum.vol column  
contain non-standard equations

**PIMA COUNTY REGIONAL FLOOD CONTROL DISTRICT**  
**ROUTING OF A FLOOD HYDROGRAPH THROUGH A STORMWATER DETENTION / RETENTION FACILITY**  
**THIS TAB CONTAINS NO INPUT DATA**

Summary of Reservoir Routing of the Inflow Hydrograph using the Specified Detention Facility and Outlet Works

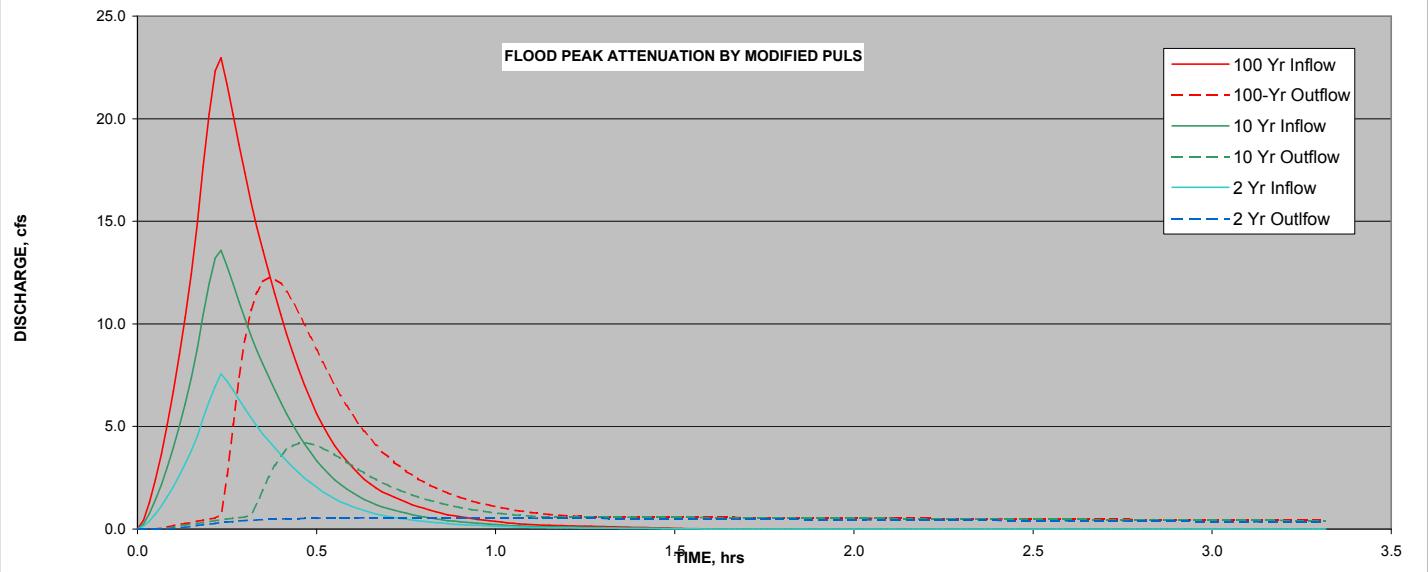


Corner basin with vertical walls and 1.5 \* tank volume

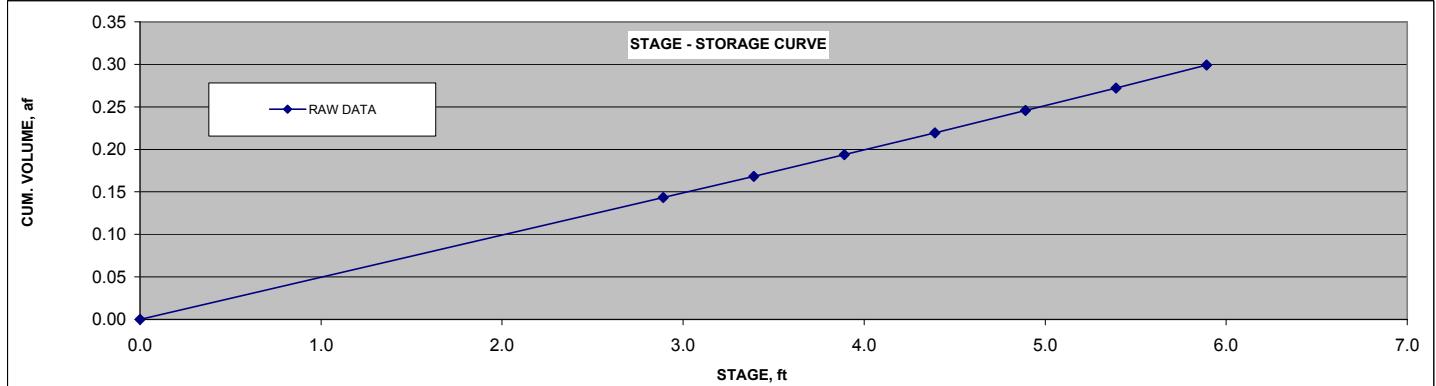
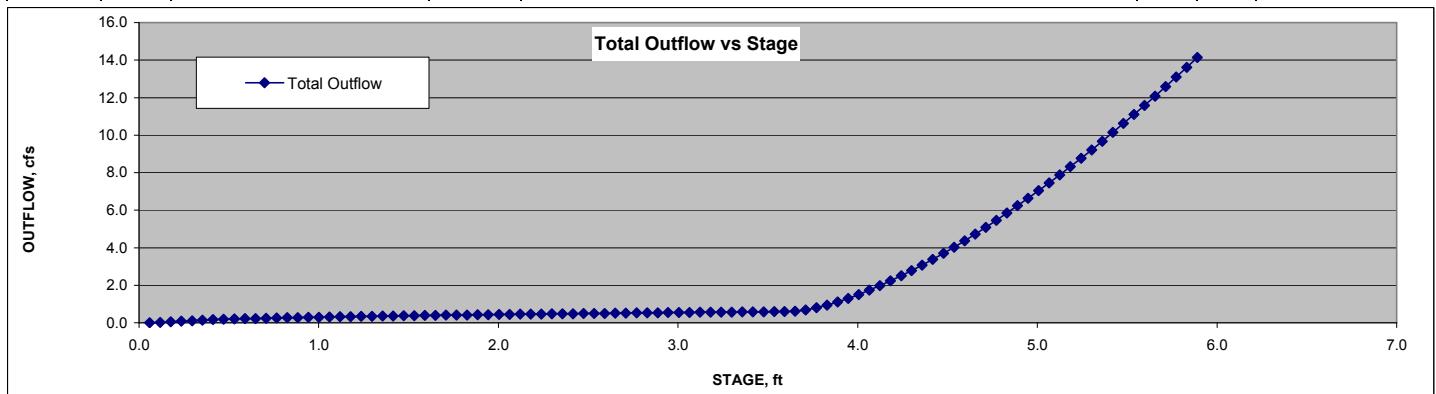
Larry K. Roberts, P.E.

Friday, January 13, 2023

final basin with 1.5 tank vol 2nd sub.xls


Project Address

Designer



Run Date

Program File Name

Rev.04/17



| ORIFICE PLATE    |                        | TRIANGULAR WEIR   |                       | RECTANGULAR WEIR(S) |        |        | RCP / RCBC |        |
|------------------|------------------------|-------------------|-----------------------|---------------------|--------|--------|------------|--------|
| $d_o$ (in) = 3.5 | diameter               | $Z$ = 0.0         | side slope            |                     |        |        | $RCP$      | $RCBC$ |
| $C$ (dim) = 0.60 | discharge coefficient  | $E_w$ (ft) = 0.00 | stage at weir crest   | $L$ (ft) = 1.3      | rect 1 | rect 2 | 0.0        | 0.0    |
| $N$ = 1          | nbr identical openings | $\Theta$ = 0.00   | ° notch angle         | $C$ = 3.00          | 0.00   | 0.00   | 0.0        | 0.0    |
| inv (ft) = 0.00  | stage at invert        | $C_1$ = 0         | discharge coefficient | $E_w$ (ft) = 3.64   | 0.00   | 0.00   | 0.00       | 0.00   |



| RESULTS: | max inflow | max outflow | target discharge | total inflow volume   | max stage (H) * | * Max Design Stage (ft) = 5.89 |        |
|----------|------------|-------------|------------------|-----------------------|-----------------|--------------------------------|--------|
| 100-Year | 23.0 cfs   | 12.3 cfs    | 14.0 cfs         | 24370 ft <sup>3</sup> | 0.559 af        | 5.67 ft at                     | 22 min |
| 10-Year  | 13.6 cfs   | 4.2 cfs     | 6.7 cfs          | 14415 ft <sup>3</sup> | 0.331 af        | 4.57 ft at                     | 28 min |
| 2-Year   | 7.6 cfs    | 0.6 cfs     | 2.1 cfs          | 8150 ft <sup>3</sup>  | 0.187 af        | 3.13 ft at                     | 43 min |

NOTE: IF H > MAX DESIGN STAGE,  
EXTEND STAGE-VOL DATA TO A HIGHER  
STAGE

Retention basin drain time

|                  |      |     |                                                          |
|------------------|------|-----|----------------------------------------------------------|
| Retention volume | 6243 | cf  | underground storage                                      |
| Average outflow  | 0.4  | cfs | orifice discharge for average tank depth (from PC-Route) |
| Drain time       | 4.3  | hr  |                                                          |

Residences at Morning Vista

Hydrograph summation - B2+B3+basin outflow

Preliminary Design - 100-yr volume for underground tank

| Concentration Point | B2                     | B3  | Basin | Basin+B2 | Basin+B2+B3 | B2                    | B3  | Basin | Basin+B2 | Basin+B2+B3 | B2                   | B3  | Basin | Basin+B2 | Basin+B2+B3 |
|---------------------|------------------------|-----|-------|----------|-------------|-----------------------|-----|-------|----------|-------------|----------------------|-----|-------|----------|-------------|
|                     | Q100 (cfs)             |     |       |          |             | Q10 (cfs)             |     |       |          |             | Q2 (cfs)             |     |       |          |             |
| Q max (cfs)         | 2.7                    | 0.4 | 13.9  | 15.6     | 15.8        | 1.1                   | 0.2 | 5.8   | 6.4      | 6.5         | 0.4                  | 0.1 | 1.1   | 1.3      | 1.3         |
| Time (min)          | Q100 hydrographs (cfs) |     |       |          |             | Q10 hydrographs (cfs) |     |       |          |             | Q2 hydrographs (cfs) |     |       |          |             |
| 0                   | 0.0                    | 0.0 | 0.0   | 0.0      | 0.0         | 0.0                   | 0.0 | 0.0   | 0.0      | 0.0         | 0.0                  | 0.0 | 0.0   | 0.0      | 0.0         |
| 1                   | 0.1                    | 0.0 | 0.0   | 0.1      | 0.1         | 0.0                   | 0.0 | 0.0   | 0.0      | 0.0         | 0.0                  | 0.0 | 0.0   | 0.0      | 0.0         |
| 2                   | 0.2                    | 0.0 | 0.0   | 0.2      | 0.2         | 0.1                   | 0.0 | 0.0   | 0.1      | 0.1         | 0.0                  | 0.0 | 0.0   | 0.0      | 0.0         |
| 3                   | 0.3                    | 0.0 | 0.0   | 0.3      | 0.3         | 0.1                   | 0.0 | 0.0   | 0.1      | 0.1         | 0.0                  | 0.0 | 0.0   | 0.0      | 0.0         |
| 4                   | 0.4                    | 0.1 | 0.0   | 0.5      | 0.5         | 0.1                   | 0.0 | 0.0   | 0.2      | 0.2         | 0.0                  | 0.0 | 0.0   | 0.0      | 0.1         |
| 5                   | 0.6                    | 0.1 | 0.1   | 0.7      | 0.8         | 0.2                   | 0.0 | 0.0   | 0.3      | 0.3         | 0.1                  | 0.0 | 0.0   | 0.1      | 0.1         |
| 6                   | 0.8                    | 0.1 | 0.2   | 1.0      | 1.1         | 0.3                   | 0.1 | 0.1   | 0.4      | 0.4         | 0.1                  | 0.0 | 0.0   | 0.1      | 0.1         |
| 7                   | 1.0                    | 0.1 | 0.2   | 1.2      | 1.4         | 0.3                   | 0.1 | 0.2   | 0.5      | 0.6         | 0.1                  | 0.0 | 0.1   | 0.2      | 0.2         |
| 8                   | 1.2                    | 0.2 | 0.3   | 1.5      | 1.7         | 0.4                   | 0.1 | 0.2   | 0.6      | 0.7         | 0.1                  | 0.0 | 0.1   | 0.2      | 0.3         |
| 9                   | 1.5                    | 0.2 | 0.3   | 1.8      | 2.0         | 0.5                   | 0.1 | 0.2   | 0.7      | 0.8         | 0.1                  | 0.1 | 0.1   | 0.3      | 0.3         |
| 10                  | 1.8                    | 0.3 | 0.4   | 2.2      | 2.4         | 0.6                   | 0.1 | 0.3   | 0.9      | 1.0         | 0.2                  | 0.1 | 0.2   | 0.4      | 0.4         |
| 11                  | 2.1                    | 0.3 | 0.4   | 2.5      | 2.8         | 0.7                   | 0.2 | 0.3   | 1.0      | 1.2         | 0.2                  | 0.1 | 0.2   | 0.4      | 0.5         |
| 12                  | 2.4                    | 0.3 | 0.5   | 2.9      | 3.3         | 0.8                   | 0.2 | 0.4   | 1.2      | 1.4         | 0.2                  | 0.1 | 0.3   | 0.5      | 0.6         |
| 13                  | 2.7                    | 0.4 | 1.5   | 4.2      | 4.6         | 0.9                   | 0.2 | 0.4   | 1.3      | 1.5         | 0.2                  | 0.1 | 0.3   | 0.5      | 0.6         |
| 14                  | 2.7                    | 0.4 | 4.1   | 6.8      | 7.2         | 1.0                   | 0.2 | 0.5   | 1.5      | 1.7         | 0.3                  | 0.1 | 0.3   | 0.6      | 0.7         |
| 15                  | 2.6                    | 0.4 | 6.9   | 9.5      | 9.9         | 1.1                   | 0.2 | 0.5   | 1.6      | 1.8         | 0.3                  | 0.1 | 0.4   | 0.7      | 0.8         |
| 16                  | 2.4                    | 0.3 | 9.4   | 11.8     | 12.1        | 1.0                   | 0.2 | 0.8   | 1.9      | 2.0         | 0.4                  | 0.1 | 0.4   | 0.7      | 0.8         |
| 17                  | 2.2                    | 0.3 | 11.3  | 13.5     | 13.8        | 1.0                   | 0.2 | 1.7   | 2.7      | 2.9         | 0.4                  | 0.1 | 0.4   | 0.8      | 0.9         |
| 18                  | 2.1                    | 0.3 | 12.6  | 14.7     | 15.0        | 0.9                   | 0.1 | 2.8   | 3.7      | 3.8         | 0.4                  | 0.1 | 0.4   | 0.8      | 0.9         |
| 19                  | 1.9                    | 0.3 | 13.4  | 15.3     | 15.6        | 0.9                   | 0.1 | 3.7   | 4.6      | 4.7         | 0.4                  | 0.1 | 0.4   | 0.8      | 0.9         |
| 20                  | 1.8                    | 0.3 | 13.8  | 15.6     | 15.8        | 0.8                   | 0.1 | 4.4   | 5.3      | 5.4         | 0.4                  | 0.1 | 0.5   | 0.8      | 0.9         |
| 21                  | 1.6                    | 0.2 | 13.9  | 15.5     | 15.7        | 0.7                   | 0.1 | 5.0   | 5.8      | 5.9         | 0.3                  | 0.1 | 0.5   | 0.8      | 0.9         |
| 22                  | 1.5                    | 0.2 | 13.7  | 15.2     | 15.4        | 0.7                   | 0.1 | 5.4   | 6.1      | 6.2         | 0.3                  | 0.1 | 0.5   | 0.8      | 0.9         |
| 23                  | 1.4                    | 0.2 | 13.4  | 14.7     | 14.9        | 0.6                   | 0.1 | 5.7   | 6.3      | 6.4         | 0.3                  | 0.1 | 0.5   | 0.8      | 0.8         |
| 24                  | 1.2                    | 0.2 | 12.9  | 14.1     | 14.3        | 0.6                   | 0.1 | 5.8   | 6.4      | 6.5         | 0.3                  | 0.0 | 0.5   | 0.8      | 0.8         |
| 25                  | 1.1                    | 0.2 | 12.3  | 13.4     | 13.6        | 0.6                   | 0.1 | 5.8   | 6.4      | 6.5         | 0.3                  | 0.0 | 0.5   | 0.8      | 0.8         |
| 26                  | 1.0                    | 0.1 | 11.7  | 12.7     | 12.8        | 0.5                   | 0.1 | 5.8   | 6.3      | 6.3         | 0.3                  | 0.0 | 0.5   | 0.8      | 0.8         |
| 27                  | 0.9                    | 0.1 | 11.0  | 11.9     | 12.0        | 0.5                   | 0.1 | 5.6   | 6.1      | 6.1         | 0.2                  | 0.0 | 0.6   | 0.9      | 0.9         |
| 28                  | 0.8                    | 0.1 | 10.3  | 11.1     | 11.3        | 0.4                   | 0.1 | 5.4   | 5.8      | 5.9         | 0.2                  | 0.0 | 0.7   | 0.9      | 1.0         |
| 29                  | 0.8                    | 0.1 | 9.6   | 10.4     | 10.5        | 0.4                   | 0.1 | 5.2   | 5.6      | 5.6         | 0.2                  | 0.0 | 0.8   | 1.0      | 1.1         |
| 30                  | 0.7                    | 0.1 | 9.0   | 9.6      | 9.7         | 0.4                   | 0.0 | 4.9   | 5.3      | 5.3         | 0.2                  | 0.0 | 0.9   | 1.1      | 1.1         |
| 31                  | 0.6                    | 0.1 | 8.3   | 8.9      | 9.0         | 0.3                   | 0.0 | 4.7   | 5.0      | 5.0         | 0.2                  | 0.0 | 1.0   | 1.2      | 1.2         |
| 32                  | 0.5                    | 0.1 | 7.7   | 8.2      | 8.3         | 0.3                   | 0.0 | 4.4   | 4.7      | 4.7         | 0.2                  | 0.0 | 1.1   | 1.2      | 1.2         |
| 33                  | 0.5                    | 0.1 | 7.1   | 7.6      | 7.7         | 0.3                   | 0.0 | 4.1   | 4.4      | 4.4         | 0.2                  | 0.0 | 1.1   | 1.3      | 1.3         |
| 34                  | 0.4                    | 0.1 | 6.6   | 7.0      | 7.1         | 0.2                   | 0.0 | 3.9   | 4.1      | 4.2         | 0.1                  | 0.0 | 1.1   | 1.3      | 1.3         |
| 35                  | 0.4                    | 0.1 | 6.1   | 6.5      | 6.5         | 0.2                   | 0.0 | 3.6   | 3.9      | 3.9         | 0.1                  | 0.0 | 1.1   | 1.3      | 1.3         |
| 36                  | 0.4                    | 0.1 | 5.6   | 6.0      | 6.0         | 0.2                   | 0.0 | 3.4   | 3.6      | 3.6         | 0.1                  | 0.0 | 1.1   | 1.3      | 1.3         |
| 37                  | 0.3                    | 0.0 | 5.2   | 5.5      | 5.6         | 0.2                   | 0.0 | 3.2   | 3.4      | 3.4         | 0.1                  | 0.0 | 1.1   | 1.2      | 1.3         |
| 38                  | 0.3                    | 0.0 | 4.8   | 5.1      | 5.1         | 0.2                   | 0.0 | 3.0   | 3.1      | 3.1         | 0.1                  | 0.0 | 1.1   | 1.2      | 1.2         |
| 39                  | 0.3                    | 0.0 | 4.4   | 4.7      | 4.7         | 0.1                   | 0.0 | 2.8   | 2.9      | 2.9         | 0.1                  | 0.0 | 1.1   | 1.2      | 1.2         |
| 40                  | 0.2                    | 0.0 | 4.1   | 4.3      | 4.4         | 0.1                   | 0.0 | 2.6   | 2.7      | 2.7         | 0.1                  | 0.0 | 1.1   | 1.2      | 1.2         |
| 41                  | 0.2                    | 0.0 | 3.8   | 4.0      | 4.0         | 0.1                   | 0.0 | 2.4   | 2.5      | 2.5         | 0.1                  | 0.0 | 1.0   | 1.1      | 1.1         |
| 42                  | 0.2                    | 0.0 | 3.5   | 3.7      | 3.7         | 0.1                   | 0.0 | 2.2   | 2.4      | 2.4         | 0.1                  | 0.0 | 1.0   | 1.1      | 1.1         |
| 43                  | 0.2                    | 0.0 | 3.3   | 3.4      | 3.5         | 0.1                   | 0.0 | 2.1   | 2.2      | 2.2         | 0.1                  | 0.0 | 1.0   | 1.0      | 1.1         |
| 44                  | 0.2                    | 0.0 | 3.0   | 3.2      | 3.2         | 0.1                   | 0.0 | 2.0   | 2.1      | 2.1         | 0.1                  | 0.0 | 0.9   | 1.0      | 1.0         |
| 45                  | 0.2                    | 0.0 | 2.8   | 3.0      | 3.0         | 0.1                   | 0.0 | 1.8   | 1.9      | 1.9         | 0.1                  | 0.0 | 0.9   | 1.0      | 1.0         |

## Residences at Morning Vista

Hydrograph summation - B2+B3+basin outflow

Final Design - 100-yr + 50% volume for underground tank

| Concentration Point    | B2  | B3  | Basin | Basin+B2 | Basin+B2+B3 | B2  | B3  | Basin | Basin+B2 | Basin+B2+B3 | B2  | B3  | Basin | Basin+B2 | Basin+B2+B3 |
|------------------------|-----|-----|-------|----------|-------------|-----|-----|-------|----------|-------------|-----|-----|-------|----------|-------------|
| Q100 (cfs)             |     |     |       |          |             |     |     |       |          |             |     |     |       |          |             |
| Q max (cfs)            | 2.7 | 0.4 | 12.3  | 13.7     | 14.0        | 1.1 | 0.2 | 4.2   | 4.6      | 4.7         | 0.4 | 0.1 | 0.6   | 0.8      | 0.9         |
| Q100 hydrographs (cfs) |     |     |       |          |             |     |     |       |          |             |     |     |       |          |             |
| Time (min)             | 0   | 0.0 | 0.0   | 0.0      | 0.0         | 0.0 | 0.0 | 0.0   | 0.0      | 0.0         | 0.0 | 0.0 | 0.0   | 0.0      | 0.0         |
| 1                      | 0.1 | 0.0 | 0.0   | 0.1      | 0.1         | 0.0 | 0.0 | 0.0   | 0.0      | 0.0         | 0.0 | 0.0 | 0.0   | 0.0      | 0.0         |
| 2                      | 0.2 | 0.0 | 0.0   | 0.2      | 0.2         | 0.1 | 0.0 | 0.0   | 0.1      | 0.1         | 0.0 | 0.0 | 0.0   | 0.0      | 0.0         |
| 3                      | 0.3 | 0.0 | 0.0   | 0.3      | 0.3         | 0.1 | 0.0 | 0.0   | 0.1      | 0.1         | 0.0 | 0.0 | 0.0   | 0.0      | 0.0         |
| 4                      | 0.4 | 0.1 | 0.0   | 0.5      | 0.5         | 0.1 | 0.0 | 0.0   | 0.2      | 0.2         | 0.0 | 0.0 | 0.0   | 0.0      | 0.1         |
| 5                      | 0.6 | 0.1 | 0.1   | 0.7      | 0.8         | 0.2 | 0.0 | 0.0   | 0.3      | 0.3         | 0.1 | 0.0 | 0.0   | 0.1      | 0.1         |
| 6                      | 0.8 | 0.1 | 0.2   | 1.0      | 1.1         | 0.3 | 0.1 | 0.1   | 0.4      | 0.4         | 0.1 | 0.0 | 0.0   | 0.1      | 0.1         |
| 7                      | 1.0 | 0.1 | 0.2   | 1.2      | 1.4         | 0.3 | 0.1 | 0.2   | 0.5      | 0.6         | 0.1 | 0.0 | 0.1   | 0.2      | 0.2         |
| 8                      | 1.2 | 0.2 | 0.3   | 1.5      | 1.7         | 0.4 | 0.1 | 0.2   | 0.6      | 0.7         | 0.1 | 0.0 | 0.1   | 0.2      | 0.3         |
| 9                      | 1.5 | 0.2 | 0.3   | 1.8      | 2.0         | 0.5 | 0.1 | 0.2   | 0.7      | 0.8         | 0.1 | 0.1 | 0.1   | 0.3      | 0.3         |
| 10                     | 1.8 | 0.3 | 0.4   | 2.2      | 2.4         | 0.6 | 0.1 | 0.3   | 0.9      | 1.0         | 0.2 | 0.1 | 0.2   | 0.3      | 0.4         |
| 11                     | 2.1 | 0.3 | 0.4   | 2.5      | 2.8         | 0.7 | 0.2 | 0.3   | 1.0      | 1.2         | 0.2 | 0.1 | 0.2   | 0.4      | 0.5         |
| 12                     | 2.4 | 0.3 | 0.5   | 2.9      | 3.3         | 0.8 | 0.2 | 0.4   | 1.2      | 1.4         | 0.2 | 0.1 | 0.3   | 0.5      | 0.6         |
| 13                     | 2.7 | 0.4 | 0.6   | 3.2      | 3.6         | 0.9 | 0.2 | 0.4   | 1.3      | 1.5         | 0.2 | 0.1 | 0.3   | 0.5      | 0.6         |
| 14                     | 2.7 | 0.4 | 0.7   | 3.4      | 3.8         | 1.0 | 0.2 | 0.5   | 1.5      | 1.7         | 0.3 | 0.1 | 0.3   | 0.6      | 0.7         |
| 15                     | 2.6 | 0.4 | 2.6   | 5.2      | 5.6         | 1.1 | 0.2 | 0.5   | 1.6      | 1.8         | 0.3 | 0.1 | 0.4   | 0.7      | 0.8         |
| 16                     | 2.4 | 0.3 | 5.1   | 7.5      | 7.8         | 1.0 | 0.2 | 0.5   | 1.6      | 1.7         | 0.4 | 0.1 | 0.4   | 0.7      | 0.8         |
| 17                     | 2.2 | 0.3 | 7.4   | 9.6      | 10.0        | 1.0 | 0.2 | 0.6   | 1.5      | 1.7         | 0.4 | 0.1 | 0.4   | 0.8      | 0.9         |
| 18                     | 2.1 | 0.3 | 9.3   | 11.3     | 11.6        | 0.9 | 0.1 | 0.6   | 1.5      | 1.7         | 0.4 | 0.1 | 0.4   | 0.8      | 0.9         |
| 19                     | 1.9 | 0.3 | 10.7  | 12.6     | 12.8        | 0.9 | 0.1 | 0.7   | 1.5      | 1.7         | 0.4 | 0.1 | 0.4   | 0.8      | 0.9         |
| 20                     | 1.8 | 0.3 | 11.5  | 13.3     | 13.5        | 0.8 | 0.1 | 1.2   | 2.0      | 2.2         | 0.4 | 0.1 | 0.5   | 0.8      | 0.9         |
| 21                     | 1.6 | 0.2 | 12.1  | 13.7     | 13.9        | 0.7 | 0.1 | 1.9   | 2.6      | 2.8         | 0.3 | 0.1 | 0.5   | 0.8      | 0.9         |
| 22                     | 1.5 | 0.2 | 12.3  | 13.7     | 14.0        | 0.7 | 0.1 | 2.5   | 3.2      | 3.3         | 0.3 | 0.1 | 0.5   | 0.8      | 0.9         |
| 23                     | 1.4 | 0.2 | 12.2  | 13.6     | 13.8        | 0.6 | 0.1 | 3.1   | 3.8      | 3.8         | 0.3 | 0.1 | 0.5   | 0.8      | 0.8         |
| 24                     | 1.2 | 0.2 | 12.0  | 13.2     | 13.4        | 0.6 | 0.1 | 3.5   | 4.1      | 4.2         | 0.3 | 0.0 | 0.5   | 0.8      | 0.8         |
| 25                     | 1.1 | 0.2 | 11.6  | 12.7     | 12.9        | 0.6 | 0.1 | 3.9   | 4.4      | 4.5         | 0.3 | 0.0 | 0.5   | 0.8      | 0.8         |
| 26                     | 1.0 | 0.1 | 11.1  | 12.1     | 12.3        | 0.5 | 0.1 | 4.1   | 4.6      | 4.7         | 0.3 | 0.0 | 0.5   | 0.8      | 0.8         |
| 27                     | 0.9 | 0.1 | 10.5  | 11.5     | 11.6        | 0.5 | 0.1 | 4.2   | 4.6      | 4.7         | 0.2 | 0.0 | 0.5   | 0.8      | 0.8         |
| 28                     | 0.8 | 0.1 | 10.0  | 10.8     | 10.9        | 0.4 | 0.1 | 4.2   | 4.6      | 4.7         | 0.2 | 0.0 | 0.5   | 0.8      | 0.8         |
| 29                     | 0.8 | 0.1 | 9.3   | 10.1     | 10.2        | 0.4 | 0.1 | 4.2   | 4.6      | 4.6         | 0.2 | 0.0 | 0.5   | 0.7      | 0.8         |
| 30                     | 0.7 | 0.1 | 8.7   | 9.4      | 9.5         | 0.4 | 0.0 | 4.1   | 4.4      | 4.5         | 0.2 | 0.0 | 0.5   | 0.7      | 0.8         |
| 31                     | 0.6 | 0.1 | 8.1   | 8.7      | 8.8         | 0.3 | 0.0 | 4.0   | 4.3      | 4.3         | 0.2 | 0.0 | 0.5   | 0.7      | 0.7         |
| 32                     | 0.5 | 0.1 | 7.6   | 8.1      | 8.2         | 0.3 | 0.0 | 3.8   | 4.1      | 4.1         | 0.2 | 0.0 | 0.5   | 0.7      | 0.7         |
| 33                     | 0.5 | 0.1 | 7.0   | 7.5      | 7.6         | 0.3 | 0.0 | 3.6   | 3.9      | 3.9         | 0.2 | 0.0 | 0.5   | 0.7      | 0.7         |
| 34                     | 0.4 | 0.1 | 6.5   | 6.9      | 7.0         | 0.2 | 0.0 | 3.5   | 3.7      | 3.7         | 0.1 | 0.0 | 0.5   | 0.7      | 0.7         |
| 35                     | 0.4 | 0.1 | 6.0   | 6.4      | 6.5         | 0.2 | 0.0 | 3.3   | 3.5      | 3.5         | 0.1 | 0.0 | 0.6   | 0.7      | 0.7         |
| 36                     | 0.4 | 0.1 | 5.6   | 5.9      | 6.0         | 0.2 | 0.0 | 3.1   | 3.3      | 3.3         | 0.1 | 0.0 | 0.6   | 0.7      | 0.7         |
| 37                     | 0.3 | 0.0 | 5.2   | 5.5      | 5.5         | 0.2 | 0.0 | 2.9   | 3.1      | 3.1         | 0.1 | 0.0 | 0.6   | 0.7      | 0.7         |
| 38                     | 0.3 | 0.0 | 4.8   | 5.1      | 5.1         | 0.2 | 0.0 | 2.7   | 2.9      | 2.9         | 0.1 | 0.0 | 0.6   | 0.7      | 0.7         |
| 39                     | 0.3 | 0.0 | 4.4   | 4.7      | 4.7         | 0.1 | 0.0 | 2.6   | 2.7      | 2.7         | 0.1 | 0.0 | 0.6   | 0.7      | 0.7         |
| 40                     | 0.2 | 0.0 | 4.1   | 4.3      | 4.4         | 0.1 | 0.0 | 2.4   | 2.6      | 2.6         | 0.1 | 0.0 | 0.6   | 0.6      | 0.7         |
| 41                     | 0.2 | 0.0 | 3.8   | 4.0      | 4.0         | 0.1 | 0.0 | 2.3   | 2.4      | 2.4         | 0.1 | 0.0 | 0.6   | 0.6      | 0.6         |
| 42                     | 0.2 | 0.0 | 3.5   | 3.7      | 3.7         | 0.1 | 0.0 | 2.1   | 2.2      | 2.3         | 0.1 | 0.0 | 0.6   | 0.6      | 0.6         |
| 43                     | 0.2 | 0.0 | 3.3   | 3.4      | 3.5         | 0.1 | 0.0 | 2.0   | 2.1      | 2.1         | 0.1 | 0.0 | 0.6   | 0.6      | 0.6         |
| 44                     | 0.2 | 0.0 | 3.0   | 3.2      | 3.2         | 0.1 | 0.0 | 1.9   | 2.0      | 2.0         | 0.1 | 0.0 | 0.6   | 0.6      | 0.6         |
| 45                     | 0.2 | 0.0 | 2.8   | 3.0      | 3.0         | 0.1 | 0.0 | 1.8   | 1.9      | 1.9         | 0.1 | 0.0 | 0.6   | 0.6      | 0.6         |

**Appendix F. Maintenance of Drainage Infrastructure**

## Maintenance Plan and Drainage System Inspection Checklist

This document is to be used by the Homeowner's Association to define actions for inspecting and maintaining the private drainage facilities at Residences at Morning Vista, Lots 1-18 and Common Areas "A" through "C," a subdivision located within the Town of Oro Valley.

All drainage structures shall be inspected and a summary report prepared a minimum of once a year. Copies of the annual inspection report shall be available to the Town upon request.

Every five years, all drainage structures shall be inspected and a summary report prepared by an Arizona Registered Professional Engineer. The report shall also identify the maintenance needs for the next 5-year period, including the estimated annual cost of maintenance and repair. Copies of the 5-year inspection report shall be available to the Town upon request.

The stormwater detention facility includes underground storage tanks which require special attention. Following every significant runoff event, the underground tanks, outlet pipe, and orifice plate are to be inspected by removing manhole covers and checking for standing water. Remedial measures are to be completed to remove any blockages and restore outflows from the tanks.

| Drainage System Inspection Checklist               |   |                                                            |                                                     |
|----------------------------------------------------|---|------------------------------------------------------------|-----------------------------------------------------|
| Drainage Feature                                   | ✓ | Conditions to check                                        | Action needed                                       |
| Scuppers - access lane                             |   | accumulation of debris                                     | remove debris                                       |
| Riprap aprons at scuppers                          |   | erosion                                                    | repair                                              |
| Riprap apron at basin weir outlet                  |   | erosion                                                    | repair                                              |
| Riprap apron at basin pipe outlet                  |   | erosion                                                    | repair                                              |
| Riprap apron at basin inflows                      |   | erosion                                                    | repair                                              |
| Riprap swales east of Recreation Area              |   | accumulation of debris and sediment, erosion               | remove debris/sediment, restore to design condition |
| Grouted riprap swale Lots 10-11, Rec. Area         |   | accumulation of debris and sediment, erosion               | remove debris and sediment, repair erosion          |
| Earthen swales along south and west property lines |   | accumulation of debris and sediment, erosion               | remove debris and sediment, repair erosion          |
| Detention basin                                    |   | sediment accumulation (measured against graduation marker) | remove sediment, restore to design elevation        |
| Detention basin                                    |   | accumulation of debris growth of weeds                     | remove debris remove weeds                          |
| Grate inlets at detention basin                    |   | accumulation of debris                                     | remove debris                                       |
| Underground tanks at detention basin               |   | remove manhole covers and check for standing water         | remove obstructions                                 |
| Orifice plate at tank outflow                      |   | remove manhole covers and check for standing water         | remove obstructions                                 |
| Basin outflow pipe                                 |   | remove manhole covers and check for standing water         | remove obstructions                                 |

## Chapter 14. Maintenance of Drainage Infrastructure

---

### 14.1 Introduction and Purpose

Whether a facility is public or private, there is typically a stormwater control and/or conveyance component incorporated into its development. Stormwater components consist of catch basins, curb inlets, drop inlets, manholes, pipes, culverts, ditches, swales, channels, detention basins, levees, landscaping (both hardscape and softscape) and any other structure that collects, conveys and/or controls stormwater.

Maintenance of stormwater infrastructure is necessary to ensure as-designed function, stormwater quality requirements and maximization of service life. It is the responsibility of the Town of Oro Valley to ensure that all stormwater infrastructure components are properly maintained. The Town is directly responsible for those components located within the Town's right-of-way. The majority of stormwater infrastructure in the Town are privately owned and maintained by homeowner's associations (HOA's), property management companies, school districts and commercial/industrial site owners.

Subsection 2.6.11 of this Manual stipulates the preparation, during a development's design phase, of a maintenance and inspection plan as an element of the Drainage Report. The maintenance and inspection plan is to be prepared by a Civil Engineer, registered by the State of Arizona, to assure verification of proper operation and maintenance; evaluation of functional adequacy and structural stability; identification of aspects of drainage features to monitor over time; and providing a means to communicate the overall condition and aesthetics of the drainage infrastructure all while assuring the quality requirements of stormwater discharges from the site are met.

Considerations integral to a drainage infrastructure maintenance plan include growth of undesirable vegetation, debris accumulation, sediment deposition, erosion, scour, soil piping, soil settlement, structural damage and/or deterioration and adherence to Federal stormwater quality mandates.

Access required to provide maintenance of drainage infrastructure, as specified by the Drainage Report, and shown on the Improvement Plans, is considered an essential element requiring inspection and maintenance.

### 14.2 Criteria

#### 14.2.1 Annual and Post-Storm Event Inspections

As specified in Subsection 2.6.11e, all drainage infrastructure and systems are to be routinely inspected, visually, at least once each year, by a Civil Engineer registered by the State of Arizona, to verify proper operation and maintenance. Inspections are also required after any storm event that could be anticipated to cause erosion, sediment deposition, deposition of trash/debris or damage to stormwater conveyance or control infrastructure.

Annual and post-storm inspections are to be documented in a brief report that will identify immediate maintenance and/or repair needs and be submitted to the owner. A copy of inspection report(s) will be available to the Town upon request.

#### 14.2.2 Five-Year Inspections

Every 5 years a more rigorous inspection and assessment is to be conducted. The quinquennial inspection is to include a subjective evaluation by the Engineer of the criteria used at the time the drainage infrastructure was designed, inclusive of watershed and/or regulatory changes versus current design criteria in order to assess the ability of each drainage component and the overall system to function as intended as well as identify the potential need to upgrade the system to meet current design standards. Detailed design calculations are not required as part of the evaluation.

Depending on the significance of a deficiency noted during the quinquennial inspection, additional support from a Geotechnical Engineer, Structural Engineer and/or Landscape Architect registered by the State of Arizona, may, in the judgment of the Engineer, be deemed necessary. In the case where pumps may be a part of the system, a registered Electrical Engineer may be required.

The 5-year report will identify both immediate maintenance as well as anticipated maintenance needs over the ensuing 5-year period. This report will also include an opinion of the probable cost of maintenance and repair reasonably anticipated over the upcoming 5-year period to ensure adequate, available capital necessary to address such maintenance and/or repair. A copy of the 5-year inspection report is to be available to the Town upon request.

#### 14.2.3 Report Content & Format

The inspection report is to generally address the following:

- a. Project name.
- b. Owner name and address.
- c. Project location, including legal description and vicinity map.
- d. Description of the site and all constructed stormwater control and conveyance components.
- e. Purpose of the report (i.e., annual inspection, post-storm inspection or 5-year inspection)
- f. History of system maintenance and deficiencies.
- g. Deficiencies corrected since the last inspection and past deficiencies not yet corrected.
- h. Evaluation of design criteria (quinquennial report only).
- i. Inspection check list.
- j. Photos depicting the current condition of drainage infrastructure.
- k. Physical condition and any displacement of riprap or other forms of slope protection.
- l. Verification that vegetation (trees, brush or undesirable weeds or grasses) is not creating an adverse effect on drainage infrastructure or conveyance.
- m. Identification of immediate maintenance needs.

- n. Identification of anticipated maintenance and/or repair needs over the upcoming 5-year period (quinquennial report only).

The report format generally will be as follows:

- a. Text: Font use is limited to Helvetica, Arial, Calibri, Times and Times New Roman. Font size for general text is to be 11 or 12 point. All sections and paragraphs are to be numbered. Text is to be printed on 8-1/2 by 11-inch paper with a sufficient margin on the left for binding.
- b. Content Headings:
  - i. Table of Contents
  - ii. Introduction
  - iii. Project Information (i.e., location, vicinity map)
  - iv. System Background Information (historic information including build date and past maintenance and/or repairs of significance)
  - v. Inspection Findings and Evaluations
  - vi. Conclusions and Recommendations
  - vii. Appendices
- c. Reproduction can be by any available process with printing done head-to-head, if possible.
- d. Drawings or plates are to typically be 8-1/2 by 11-inch with a sufficient margin on the left for binding. Foldouts normally should not exceed 11 by 17 inches. Drawings and photos are to be included in the text or placed entirely in the appendices. Figures or drawings included in the text are to support the written material.
- e. Photos taken during the inspection are to be interfaced with the appropriate inspection comments and include description, location and date taken.
- f. Report covers are to be flexible paper or card stock with comb bindings or be bound in a loose-leaf binder. The name of the Civil Engineer conducting the inspection and the date of the inspection are to be noted on the cover together with the Engineer's seal.
- g. The report shall also include the name of the Geotechnical Engineer, Structural Engineer, Landscape Architect and/or any other technical specialist should the inspection warrant such expertise.
- h. Tree trimming, when required, is to be under the direction of a Certified Arborist who shall be identified in the report.

#### 14.2.4 Recommendations and Follow-Up

Recommendations resulting in significant mitigation and/or repair work shall not be undertaken prior to their details, including a plan if required, being submitted to the Town of Oro Valley Stormwater Utility to assure appropriate review, acceptance and permit issuance and that follow-through by the owner occurs in a timely fashion.

*Significant mitigation and/or repair* is defined as any work required to resolve a threat to future damage of stormwater conveyance or control infrastructure; cause deflection of stormwater flow; or result in overtopping of stormwater conveyance or control infrastructure.

Mitigation and/or repair recommendations will assure drainage will either (i) remain in its natural state and not be altered, disturbed or obstructed; (ii) be returned to the condition noted on the Improvement Plans accepted by the Town at the time of development; or (iii) modified in conformance with a plan, submitted by a Civil Engineer registered by the State of Arizona, and accepted by the Town.

Work of a significant mitigation or repair scope will require a follow-up inspection by the Engineer-of-Record within 10 business days of its completion. The Engineer will document the findings of this inspection and append it to the applicable inspection report that served as the basis of the work being undertaken.

Removal of sediment and debris from stormwater infrastructure components is considered solid waste requiring disposal in conformance with Federal, State, and local requirements.

Pesticide applications are to be administered only by a pesticide applicator licensed by the State of Arizona. All pesticide applications are to strictly follow the manufacturer's instructions and comply with applicable Federal, State and local regulations and ordinances.

Evidence of illicit discharges into components comprising stormwater infrastructure and conveyance systems include:

- Odor
- Color
- Clarity
- Floatables
- Deposits/stains
- Vegetation condition

Any such evidence of illicit discharge is to be noted during the inspection and reported to the Town of Oro Valley. The owner shall take all appropriate steps to mitigate the source(s) of illicit discharge(s).

#### **14.2.5 Authority**

Subsection 15-24-14Q – Authority to Inspect of the Town of Oro Valley Code provides the Town Engineer/Public Works Director or their representative the right to periodically inspect drainage and detention facilities to verify that scheduled and unscheduled maintenance activity have been adequately performed. Should the Town find the owner or owners of the drainage and/or detention facilities deficient in their obligation to adequately operate and maintain their facilities, The Town, will place the owner or owners on notice of such deficiency by issuance of a *letter of opportunity to correct*, requesting a plan of action and time frame in which the deficiency will be corrected.

#### **14.2.6 MAINTENANCE CONSIDERATIONS FOR DRAINAGE INFRASTRUCTURE**

Inspection of drainage infrastructure components shall address the maintenance considerations which follow:

##### **14.2.6.1 Catch Basins, Curb Inlets and Drop Inlets**

Catch basins, curb inlets, and drop inlets are subsurface concrete structures that receive stormwater through a metal grate or slotted opening located at the surface. Structures are

typically square or rectangular but can be round. The basin or inlet can also be designed with flow control and/or stormwater quality devices.

The primary function of the basin or inlet is to convey storm flow from the surface to a below grade conveyance system. Basins and inlets are typically designed with a sump to mitigate debris and sediment from being conveyed to and inhibiting flow in the piped conveyance system.

Catch basin, curb inlet, and drop inlet maintenance considerations include:

- Structural integrity of the grate and support frame. Ensure lid does not rock or move due to traffic.
- Pre-cast barrel sections in proper alignment, grade rings free from cracks, lifting or movement or damage.
- Free flowing inlets free of any debris or blockages.
- Evidence of infiltration into the structure at joints and/or grouting or discoloration above the sump indicating water intrusion.
- Cracks and/or deterioration of the structure or grouting including spalling concrete, exposure of reinforcing bars and/or discontinuous sections of grout or damage.
- Signs of abrasion, corrosion and/or deterioration of conveyance pipe at its connection to the basin or inlet.
- Remove sediment accumulations, debris and/or trash from inlet and/or basin. Excessive sediment accumulation is defined as that exceeding the depth of the sump or extending above the invert of the conveyance pipe.
- Mitigate sources of sediment, pollutant and/or debris impacting basins.
- First flush devices are maintained and replaced in conformance with the manufacturer's recommendations.
- ???????

#### 14.2.6.2 Manholes, Stormdrains and Culverts

Manholes provide surface access to underground pipe systems at deflections in horizontal alignment and at specified distances in the conveyance system.

Stormdrains convey surface stormwater, collected by stormdrains, or drop inlets, to receiving bodies of water.

Culverts convey streams or washes through embankments or under roads, railroads, or other infrastructure.

a. Manhole maintenance considerations include:

- Structural integrity of the cover and support frame. If in traffic area, ensure lid does not rock or move.

- Manhole security and access features are in place and fully functional including locking lids (if applicable) and access ladder rungs.
- Barrel sections in proper alignment, grade rings free from cracks, lifting or movement.
- Evidence of infiltration into the structure at joints and/or grouting or discoloration above the sump indicating water intrusion.
- Cracks and/or deterioration of the structure or grouting including spalling concrete, exposure of reinforcing bars and/or discontinuous sections of grout.
- Signs of abrasion, corrosion and/or deterioration of conveyance pipe at its connection to the manhole.
- Excessive sediment accumulation in basin or inlet. Excessive sediment accumulation is defined as that exceeding the depth of the sump or extending above the invert of the conveyance pipe.

b. Stormdrain and culvert pipe maintenance considerations include:

- Inlet and/or outlet structures are free of cracks, spalling, grout deterioration or discontinuous sections of grout, exposed reinforcing bars, settlement, lifting or rotational movement of pipe sections and damage.
- Evidence of infiltration at pipe joints.
- Cracks, abrasion, corrosion and/or deterioration along the inner surface of the pipe.
- Pipe segments are in alignment and show no evidence of shifting, shearing, cracking, lifting settlement, movement, or damage.
- Removal of sediment accumulations in excess of 20 percent of the diameter or height of the culvert.
- Signs of abrasion, corrosion and/or deterioration of conveyance pipe along its length.
- Remove debris and/or vegetation inhibiting conveyance from entering or exiting the stormdrain or culvert.
- Repair erosion at stormdrain or culvert inlet and/or outlet structures including spreader aprons.
- Repair riprap at culvert inlets or outlets where filter fabric has been exposed or if thickness of rock has been reduced.
- Ensure debris barriers and trash racks are free of debris, trash, and sediment accumulations. Replace or repair bars that are deteriorated, misaligned, bent, or damaged.
- The area within a 20-foot radius of stormdrain inlets or outlets is to be vegetation free.
- ??????

**Note: Manholes, stormdrains and culverts are subject to Occupational Safety and Health Administration (OSHA) confined space regulations.**

#### 14.2.6.3 Detention Basins

a. Detention basin maintenance considerations include:

- o Access gates, handrail, protective fencing, and security barriers are sound and in good condition and free from damage.
- o Trees or shrubs hindering access to the basin are to be trimmed or removed if within the maintenance access road.
- o Signage is in good condition and legible.
- o Graduated basin depth marker(s) or story pole(s) are in place with all 0.1-foot marker increments legible.
- o Vegetation control shall minimize and limit disturbance to areas requiring such control.
- o Remove oil or other pollutants from the surface having a thickness greater than a surface sheen.
- o Basin maintenance will ensure removal of excess sediment from sediment traps. Sediment accumulations greater than 12 inches above the lowest bottom floor elevation, as noted on the as-built plans for the basin, require removal. Sediment shall be disposed of, off-site, at a permissible location.
- o Water harvesting basin design depth is to be restored when the design depth of the basin is reduced by more than 4 inches.
- o Vehicular traffic, to the extent possible, is to be limited to access routes and sediment trap areas.
- o Unless otherwise specified in the maintenance plan, vegetation is to be left as natural as possible. Pruning of vegetation is to be minimized unless otherwise specified in the plan.
- o It is generally permissible to allow native trees, shrubs, grasses, and forbs to establish naturally from seed.
- o Non-native trees and invasive grasses (i.e., Buffelgrass, Johnson Grass, Fountain Grass, etc.) are to be removed. A list of invasive, non-native plants can be found in Appendix E, List of Noxious & Invasive Plant Species & Best Management Practices of the Pima County Regional Flood Control District publication *Regulated Riparian Habitat Mitigation Standards and Implementation Guidelines* available on the Rules and Procedures Page under the Riparian Habitat tab of the District's web page. The link to this document is:

[https://webcms.pima.gov/UserFiles/Servers/Server\\_6/File/Government/Flood%20Control/Rules%20and%20Procedures/Riparian%20Habitat%20Mitigation%20Plan%20Guidelines/onsite-guidelines.pdf](https://webcms.pima.gov/UserFiles/Servers/Server_6/File/Government/Flood%20Control/Rules%20and%20Procedures/Riparian%20Habitat%20Mitigation%20Plan%20Guidelines/onsite-guidelines.pdf)

- Basin slope treatment does not show signs of settlement, vegetative growth, erosion, piping, slumping, sinkholes, seepage, animal burrows or other detrimental effects.
- Repair rill erosion of basin slopes, including mitigating runoff down slope areas.
- Basin inlet, outlet and overflow structures are free of sediment and debris.
- Ensure moveable components at outlet control structures are operable through their full range of motion and are free of damage.
- Repair erosion at basin inlet and/or outlet structures including spreader aprons and energy dissipators.
- Ensure inlet, outlet, overflow spillway and debris control structures are free of cracks, spalling, deterioration, exposure of reinforcing bars and/or discontinuous sections of grout, settlement, lifting, rotational movement or damage.
- Evidence of water ponding for more than 12 hours after a storm event for contributing watersheds up to 10 acres or 24 hours for contributing watersheds greater than 10 acres.
- Evidence of water ponding for longer than 24 hours for after a storm event in stormwater harvesting basins.
- Ensure aesthetic expectations.
- The area within a 20-foot radius of basin inlets, outlets and/or overflow structures are to be vegetation free.

b. Dry wells are perforated, open-bottom, circular structures used to infiltrate stormwater into subsurface, well-drained soils. Drywells are more likely to collect pollutants and oily sediments unless treatment elements are included.

- Remove sediment when its depth exceeds 10 percent of the height dry well.
- Structural integrity of the grate and the support frame. Ensure lid does not rock or move or is otherwise damaged.
- Replace drywell if it does not dissipate standing water after 24 hours of a storm event.
- Comply with all manufacturer's maintenance recommendations.

#### 14.2.6.4 Channels

Channel maintenance considerations include:

- a. General

- o Access gates, handrail, protective fencing, and security barriers are sound and in good condition and free of damage.
- o Trees or shrubs hindering access to the basin are to be trimmed or removed if within the maintenance access road.
- o The area within a 20-foot radius of channel inlets or outlets is to be vegetation free.

b. Natural Channels

- o Assess the extent of required vegetation control to ensure the design capacity of the channel has not been compromised.
- o Sediment accumulations shall not exceed 20 percent of the channel depth or the design freeboard of the channel, whichever is less.
- o Ensure the channel has the proper cross-section, flow line and is free of debris accumulations and obstructions.
- o Maintenance equipment, to the extent possible, is to be limited to access routes and the channel bottom.
- o Unless otherwise specified in the maintenance plan, vegetation on the banks is permissible and is to be left as natural as possible. Pruning of vegetation is to be limited to the conveyance area of the channel unless otherwise specified in the plan.
- o Debris and/or vegetation inhibiting conveyance within the channel.
- o Native trees, shrubs, grass, and forbs are generally not permitted to establish naturally from seed.
- o Non-native trees and invasive grasses (i.e., Buffelgrass, Johnson Grass, Fountain Grass, etc.) are to be removed. (Refer to provisions addressing basin maintenance).
- o Note areas of scour, particularly at stormdrain and culvert outlets.
- o Repair rill erosion or slumping of side slopes.
- o Repair rill erosion of channel slopes, including mitigating runoff down slope areas.
- o Note if the channel is incurring downcutting due to excessive slope and/or clear runoff flows.
- o Mitigate debris, pollutants, and sediment from being discharged into washes.

c. Constructed Channels

i. General

- o Inlet and/or outlet structures are free of cracks, spalling, exposure of reinforcing bars and/or discontinuous sections of grout, settlement, lifting, rotational movement or damage.

- Evidence of infiltration at joints.
- Cracks, abrasion, corrosion and/or visual deterioration along the surface of the channel.
- No evidence of shifting, shearing, cracking, lifting, settlement, or movement.
- Sediment accumulations shall not exceed 20 percent of the channel depth or the design freeboard of the channel, whichever is less.
- Remove debris and/or obstructions from the channel.
- Remove trees and bushes within 15 feet of the side of concrete lined channels.
- Remove woody vegetation growing through riprap.
- Repair riprap in areas where filter fabric has been exposed or if thickness of rock has been reduced.
- Repair erosion at channel inlet and/or outlet structures including spreader aprons.
- Repair rill erosion of channel slopes, including diversion of runoff from slope areas.
- Animal burrows along or in proximity to

ii. Partially Lined (Bank Protected)

- Scour undermining toe of bank protection.
- **????????**

iii. Fully Lined (Sides and Bottom)

- **????????**
- **????????**

#### 14.2.6.5 Energy Dissipators and Outfalls

Energy dissipators are drainage elements installed to prevent erosion at storm drain outfalls, culvert outlets and where lined channels discharge into natural channels. A variety of energy dissipator designs exist including reinforced concrete structures, gabion baskets, riprap splash pads, and pools.

Outfalls are discharge points where stormwater enters a receiving wash at the end of a stormwater conveyance system.

Energy dissipator and outfall maintenance considerations include:

- Access gates, handrail, protective fencing, and security barriers are sound and in good condition.
- Trees or shrubs hindering access to the basin are to be trimmed or removed if within the maintenance access road.

- Remove accumulated litter, debris, or sediment accumulations in excess of 20 percent of the conveyance area of the stormwater outlet/outfall.
- Repair riprap in areas where filter fabric has been exposed or if thickness of rock has been reduced.
- Remove vegetation and/or debris blocking the outlet of the dissipator or outfall.
- Concrete structures are free of cracks, spalling, deterioration of grout, exposure of reinforcing bars and/or discontinuous sections of grout, settlement, lifting, rotational movement or damage.
- The area within a 20-foot radius of energy dissipators or outfalls is to be vegetation free.
- ??????

#### 14.2.6.6 Levees

Levees are embankments whose primary purpose is to furnish flood protection from seasonal high water and subject to water loading for periods of ranging from only a few hours to several days or weeks a year.

Levee maintenance considerations include:

- Indications of seepage through the levee.
- Settlement, slumping, sliding, cracking or erosion of levee embankment.
- Rutting.
- Rodent burrows.
- Trees and vegetation having a diameter greater than 1-inch are not permitted on or within 15 feet of the toe of the levee.
- Vegetation density or height which inhibits inspection of the levee surface.
- Access roads within the levee cross section are able to support the intended maintenance traffic and do not show signs of rutting or other deficiencies in their all-weather surface.
- Top of levee is graded so as to prohibit ponding.
- Erosion protection provided on the floodwater side slope is intact. Refer to the items contained in Subsection 14.2.6.5 for Partially Lined Channels.
- Evaluation of locations where pipelines or other utility lines cross the levee for settlement or signs of leakage.
- Closure devices on gravity pipe penetrations of the levee embankment are operational.
- Pressure pipe penetrating the levee embankments can be closed in order to isolate the portion of the pipe within the levee prism.

**Appendix G. Oro Valley Checklist**



## Drainage Report Checklist

See Cover Page of Report

|                        |                       |                                  |
|------------------------|-----------------------|----------------------------------|
| <i>Project Name:</i>   |                       |                                  |
| <i>Firm Name:</i>      |                       | <i>Engineer:</i>                 |
| <i>Address:</i>        |                       |                                  |
| <i>City:</i>           | <i>State:</i>         | <i>Zip:</i>                      |
| <i>Phone Number:</i>   |                       | <i>Fax Number:</i>               |
| <i>Property Owner:</i> |                       |                                  |
| <i>Address:</i>        |                       |                                  |
| <i>City:</i>           | <i>State:</i>         | <i>Zip:</i>                      |
| <i>Reviewed By:</i>    | <i>Date Reviewed:</i> | <i>Date Accepted for Review:</i> |

The following checklist is intended as a guide for the engineer preparing a Technical Drainage Study for submittal to the Town of Oro Valley. The items listed are the minimum information required for submission to the Town. The engineer will remain responsible to ensure that the Technical Drainage Study is prepared according to guidelines set forth in the Oro Valley Drainage Criteria Manual and other applicable standards as required by the Town of Oro Valley

**Cover:**

- Name, address, Township, Range, Section and Pima County Tax Code of the parcel, project or development for which the report is being submitted, as well as the Town of Oro Valley's project number.
- Name and address of the client/owner of the parcel.
- Name and address of the engineering/consulting firm preparing the report.

- Submittal date.
- n/a state name of person preparing report, if other than registrant sealing the report.

## Table of Contents:

- Seal and signature of Arizona Registered Professional Engineer (and/or on the report cover)
- Project name and legal description.
- Vicinity Map (see Location map).
- Include site location map identifying major features.
- Describe project type and size.
- Identify purpose and objectives of report (i.e. tentative plat, preliminary plat, development plan, etc.).
- Identify major drainageways and existing drainage facilities.
- Include general discussion on the topography.
- Identify the zoning.
- State whether the project site contains mapped floodplains.
- State whether detention is required.
- State sources of other reports used for the study.
- Provide a comprehensive narrative that clearly states the drainage engineer's concepts, rational, and assumptions.

## 2) Existing Conditions Drainage:

- On-site drainage.
  - i. Identify existing drainage network, patterns, watershed, and regulatory floodplain boundaries.
- Off-site watershed.
  - i. Note existing and future conditions, and drainage network entering the project site. Note any sheet flow conditions entering site.
  - ii. Identify existing drainage studies for project site or adjacent sites that 1) are impacted, or 2) impact project site.
  - iii. Identify existing flood hazard zones as identified by the Town of Oro Valley and/or FEMA (Include FIRM panel or applicable portion of FIRM panel).

## 3) Proposed Conditions Drainage Design:

- Include general description of proposed conditions, drainage facilities, and components.
- State storm water detention requirements for the proposed site as well as volume required, size and location of detention basins.
- Delineate pre-and post-runoff characteristics at concentration points exiting the site
- Identify, in detail, proposed drainage structures or drainage facilities. Include design criteria and probable effects on the existing upstream and downstream drainage system.
- Discuss any design exceptions, variations from manual, stipulations, permit issues (404 compliance statement, NPDES, FEMA), etc.

## 5) Hydrologic and Hydraulic Analysis:

- Hydrology
  - i. Identify procedures, methods and assumptions.
  - ii. Include table listing design flow rates at concentration points.
- Hydraulics
  - i. Identify procedures, methods and assumptions.
  - ii. Include a summary table listing channels that were analyzed with a comparison of pre-versus post-peak discharge, water surface elevation and velocities.
  - iii. Describe methods used to convey onsite and offsite flows.
- n/a iv. Provide standard detail # and/or regulatory agency
- Floodplain Analysis
  - i. Describe the results of floodplain hydraulic analysis in terms of site design.
  - ii. Include a summary table listing channels that were analyzed with a comparison of pre-verses post-peak discharge, water surface elevation and velocities.
  - iii. Include method of floodplain boundary analysis and explain output messages, and how coefficients were determined.
- Storm Water Detention Calculations
  - i. Identify procedures, methods and assumptions.
  - ii. Include Table of Volume of Storage required, and Location and Storage Volume required
  - iii. Include Table of Basin Outlet Discharge and Velocity.
- Drainage Facilities Design
  - i. Identify procedures, methods and assumptions used for design of storm drains, culverts, etc.
  - ii. Include a summary table of drainage facilities.
- Erosion Control
  - i. Discuss the need for bank protection, the proposed location, materials and free board.
  - ii. Discuss scour basin requirements, dimensions and materials.
  - iii. Discuss procedures, methods and assumptions.
  - iv. Include discussion of Storm Water Pollution Prevention Plan submittal requirements.

## 6) Conclusion:

- Discuss overall project objectives.
- Affirm compliance with criteria set forth in this manual and other Town of Oro Valley Standards.
- Discuss the influence of proposed development on existing conditions.
- Discuss the effectiveness of the drainage design to control damage from storm water runoff downstream of project site.
- Discuss impacts to adjacent properties and watershed drainage.
- n/a Discuss if and how drainage improvements will be phased.
- Provide a summary of report's findings.

## 7) References:

- List all references used.

## Appendix A – Hydrologic computations and backup:

See text      Include land use assumptions, existing and proposed.

- Include soils information and exhibits.
- Include peak flow calculations.
- Include retention/detention inflow-outflow analysis and basin design calculations.

- n/a Include computer input and output files in both hard copy and electronic format.
- x Include electronic copies (AutoCAD/GIS) of basin delineations, flow paths, routing reaches, concentration points, and other supporting hydrologic data.

## Appendix B – Hydraulic computations and backup:

- x Include channel design calculations.
- n/a Include floodplain calculations. At a minimum, include cross-section number, water surface elevation, top width, area, velocity, and Froude number.
- n/a Cross-section and profile plots.
- n/a Include erosion hazard setback calculations.
- n/a Include culvert design calculations.
- x Include curb opening and catch basin calculations.
- n/a Include storm drain calculations.
- n/a Include sediment and scour calculations.
- x Include rip-rap sizing and stability analysis.
- n/a Include finished floor elevations.
  - i. Basis for setting finished floor elevations for floodplains and/or adjacent washes.
- n/a Include computer input and output files in both hard copy and electronic format.
- n/a Include electronic copies (AutoCAD/GIS) of floodplain delineations, cross section locations and 100 year water surface elevations.
- x Include applicable plan set/sheets related to drainage activities and design.

Additional Information and Notes: none

**Appendix H. Grenier Plans**

| FEATURE                              | NEW            | EXISTING       |
|--------------------------------------|----------------|----------------|
| SURVEY MONUMENT                      |                | ◎              |
| BOUNDARY LINE                        | —              | —              |
| PROPERTY LINE                        | — - - - -      | — - - - -      |
| EASEMENT LINE                        | — - - - -      | — - - - -      |
| CENTER LINE                          | — - - - -      | — - - - -      |
| CONTOUR LINE - MAJOR                 | — - 50 — -     | — - 50 — -     |
| CONTOUR LINE - MINOR                 | — - - 51 - - - | — - - 51 - - - |
| A.C. PAVEMENT                        | —              | —              |
| CONCRETE CURB                        | —              | —              |
| DEPRESSED CURB                       | —              | —              |
| CONCRETE SIDEWALK/PAD                | —              | —              |
| BUILDING EXTERIOR WALL               | —              | —              |
| WALL                                 | —              | —              |
| ELECTRICAL TRANSFORMER               | □              | □              |
| STREET LIGHTING PULLBOX              |                | □              |
| ELECTRICAL METER                     |                | ◇              |
| STREET LIGHT                         |                | ◆              |
| ELECTRICAL MANHOLE                   |                | ○              |
| TELEPHONE MANHOLE                    |                | ○              |
| TELEPHONE PEDESTAL                   |                | ○              |
| UTILITY PEDESTAL                     |                | ◇              |
| SANITARY SEWER LINE                  | — S —          | — S —          |
| SANITARY SEWER MANHOLE               | ○              | ○              |
| SANITARY SEWER CLEANOUT              | ○ CO           | ○ CO           |
| FIRE HYDRANT                         | — ● —          | — ● —          |
| WATER LINE                           | — W —          | — W —          |
| RECLAIMED WATER LINE                 |                | — RW —         |
| WATER METER                          | ■ W            | ■ W            |
| BACKFLOW PREVENTOR                   | ○ ○            | ○ ○            |
| BACKFLOW VALVE                       |                | △              |
| WATER VALVE                          | ○              | ○              |
| RECLAIMED WATER VALVE                |                | ●              |
| WATER METER                          |                | ○              |
| SLOPE ARROW                          | —              | —              |
| GRADE POINT                          | — 51.00 —      | — 51.00 —      |
| SIGN                                 | — ● —          | — ● —          |
| BOLLARD                              | ○ ● ○          | ●              |
| FENCE                                | — X —          | — X —          |
| IRRIGATION CONTROL VALVE             |                | △ ▽            |
| RIPRAP                               | —              | —              |
| TRADE AREA FOR 25% SLOPE DISTURBANCE | —              | —              |
| SLOPES GREATER THAN 25%              |                | —              |

*FINAL SITE PLAN AND IMPROVEMENT PLANS for*  
**RESIDENCES AT**  
**MORNING VISTA**

2102029



**NORTH  
SCALE: 1"=50'**

## BASIS OF BEARINGS

THE BASIS OF BEARING FOR THIS PROJECT IS, ACCORDING TO  
BOOK 51 OF MAPS AND PLATS AT PAGE 8, PIMA COUNTY,  
ARIZONA BETWEEN MONUMENTS FOUND ON THE CENTERLINE OF  
RANCHO VISTOSO BOULEVARD, AS SHOWN.

## ***BASIS OF ELEVATIONS***

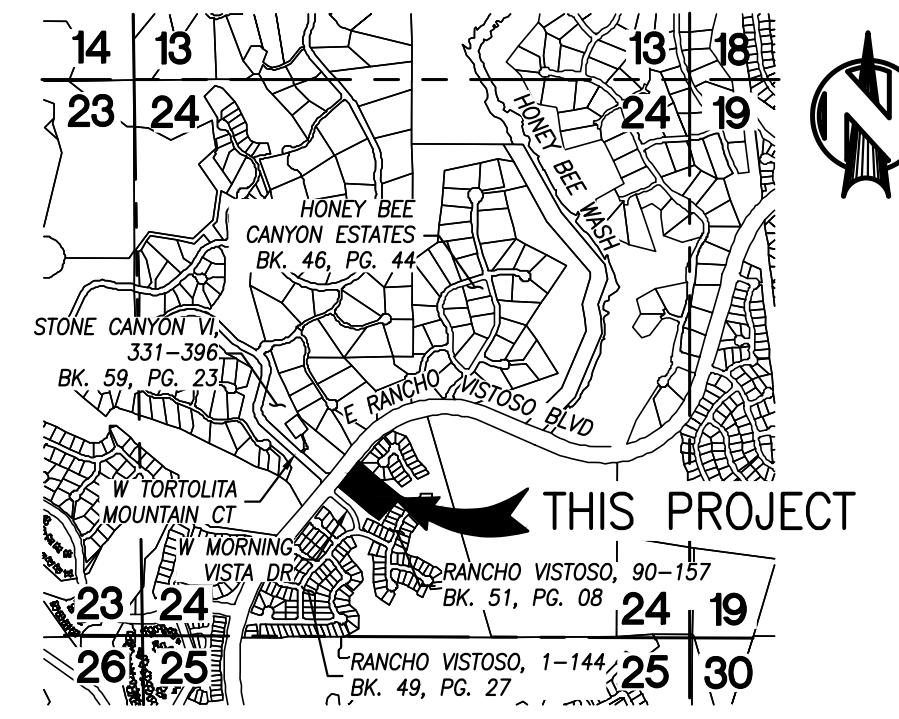
THE BASIS OF ELEVATION FOR THIS PROJECT IS THE PIMA COUNTY OPUS CONTROL POINT R21. A  $\frac{1}{2}$ " REBAR NORTH EDGE OF CONCRETE WALK NORTH SIDE OF VISTOSO HIGHLANDS DRIVE. ELEVATION BEING: 2950.40'  
DATUM: NAVD88

OWNER

**SPECTRUM CAPITAL  
HOLDINGS 2, LLC**  
CONTACT : MATT HORN  
ADDRESS : 5425 E BROADWAY BLVD #200  
TUCSON, AZ 85711

## DEVELOPER

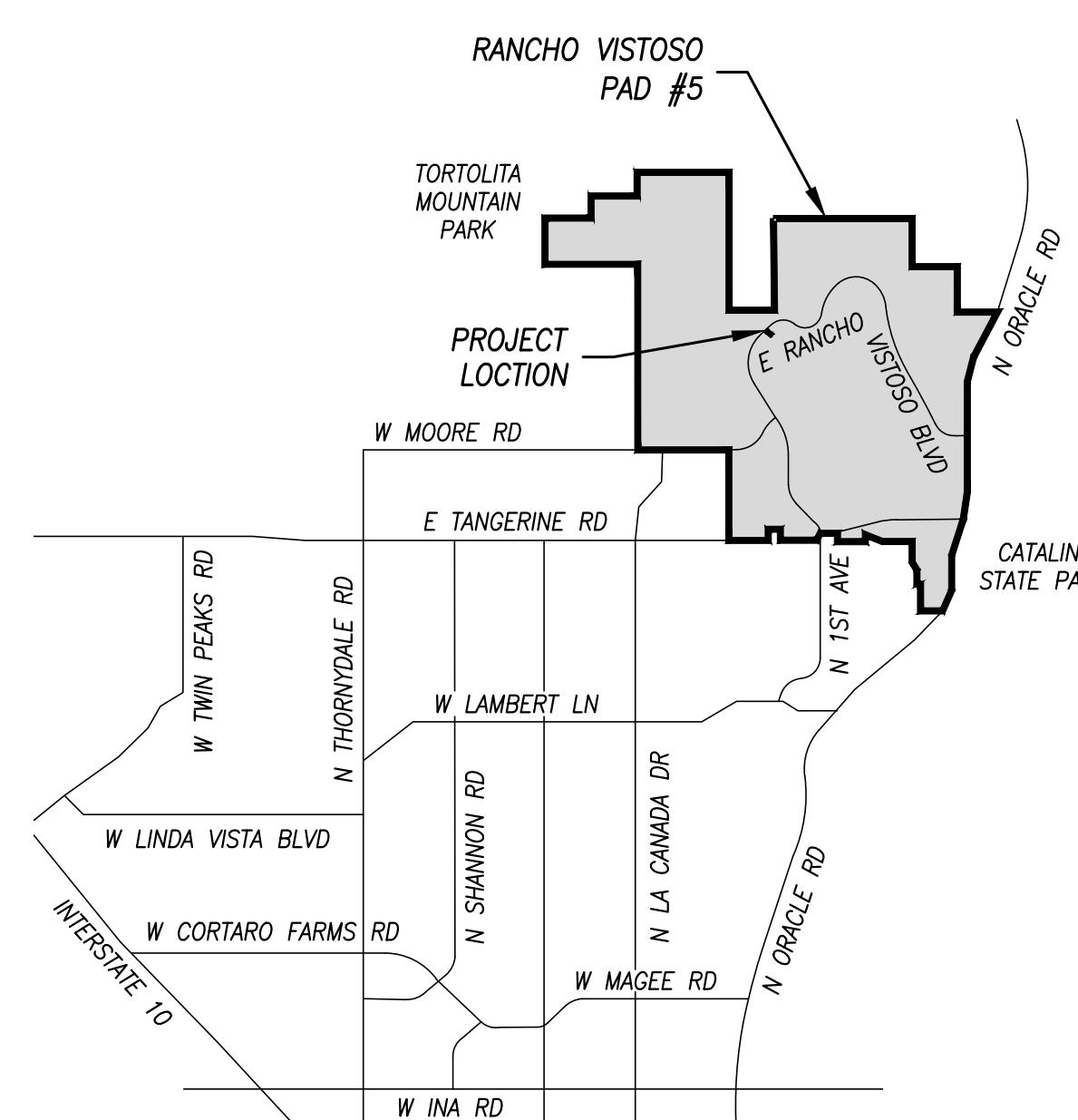
DSW COMMERCIAL REAL ESTATE  
CONTACT : MICHAEL A. SARABIA  
ADDRESS : 1795 E. SKYLINE DR., STE. 193  
              TUCSON, AZ 85718  
PHONE : (520) 297-8929  
EMAIL : [msarabia@dswcommercial.com](mailto:msarabia@dswcommercial.com)


## *ARCHITECT*

JAMES E. McMAHON ARCHITECTURE  
& PLANNING, PLLC  
CONTACT : JAMES E. McMAHON  
ADDRESS : 6340 N. CAMPBELL AVE., #270  
              TUCSON, AZ 85718  
PHONE : (520) 321-0468  
EMAIL : [jimmcmahon@aol.com](mailto:jimmcmahon@aol.com)

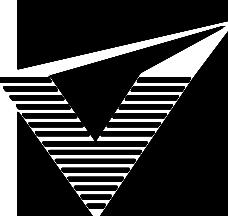
# LANDSCAPE ARCHITECT

## SHEET INDEX


1 - C1.0 COVER SHEET & LEGEND  
2 - C1.1 NOTES  
3 - C1.2 NOTES  
4 - C2.0 DEMOLITION PLAN  
5 - C3.0 TENTATIVE PLAT - SITE PLAN  
6 - C3.1 TENTATIVE PLAT - ANNOTATION  
7 - C4.0 GRADING PLAN  
8 - C5.0 UTILITY PLAN  
9 - C5.1 UTILITY PLAN  
10 - C6.0 ROAD PLAN & PROFILE  
11 - C6.1 ROAD PLAN & PROFILE  
12 - C7.0 DETAILS  
13 - C7.1 DETAILS  
14 - C7.2 DETAILS  
15 - C8.0 HORIZONTAL CONTROL PLAN  
16 - C9.0 STORM WATER POLLUTION  
PREVENTION PLAN (SWPPP)  
17 - C10.0 UNDERGROUND DETENTION TANK  
DETAILS - FOR REFERENCE



## LOCATION MAP


SCALE: 3" = 1 MILE  
A PORTION OF THE SW QTR. SECTION 24, T-11-S,  
R-13-E G&SRM, TOWN OF ORO VALLEY, PIMA  
COUNTY, ARIZONA 85755

## CIVIL ENGINEER



# **RANCHO VISTOSO PLANNED AREA DEVELOPEMENT (PAD) 5**

REF : 2003075

|                                                                                                                                                                                                                  |      |                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------|
| Rev #                                                                                                                                                                                                            | Date | Description                                                                                                                 |
|                                                                                                                             |      | <b>GRENIER</b><br><b>ENGINEERING, INC.</b><br><u>Structural &amp; Civil Engineering Consultant</u>                          |
| 6300 E. El Dorado Plaza Suite A120, Tucson, Arizona 85715<br>Phone: 520.326.7082 ~ Fax: 520.326.7508                                                                                                             |      |                                                                                                                             |
| Sheet Name<br><b>COVER SHEET</b>                                                                                                                                                                                 |      | Job Number: 20124<br>Designed By: AR/JM<br>Drawn By: AR<br>Checked By: JM<br>Date: 3/6/2023<br>Scale: N/A   Vt: Hz AS NOTED |
| Project<br><b>RESIDENCES AT MORNING VISTA</b><br>LOTS 1 - 18 AND COMMON AREAS "A" THROUGH "C"<br>A PORTION OF THE SW QTR. SECTION 24, T-11-S,<br>R-13-E G&SRM, TOWN OF ORO VALLEY, PIMA<br>COUNTY, ARIZONA 85755 |      | Sheet Number:<br><b>C1.0</b><br><br>Sheet 1 of 17                                                                           |

## T.O.V. GENERAL NOTES:

1. GROSS AREA OF DEVELOPMENT IS 152,761.5 SQFT, OR 3.51 ACRES.
2. RESIDENTIAL UNITS (18 TOTAL) PER ACRE (3.51 AC.) FOR THIS PROJECT IS 5.1.
3. TOTAL MILES OF NEW PUBLIC STREETS IS 0.
4. TOTAL MILES OF NEW PRIVATE STREETS IS 0.12.
5. THIS PROJECT IS DESIGNED TO MEET THE RANCHO VISTOSO HILLSIDE DISTRICT CRITERIA.
6. ASSURANCES FOR WATER SERVICE, SITE STABILIZATION AND LANDSCAPING MUST BE POSTED PRIOR TO THE ISSUANCE OF GRADING PERMITS.
7. SHOULD AN EASEMENT BE IN CONFLICT WITH ANY PROPOSED BUILDING LOCATION, VACATION OF THE EASEMENT IS TO OCCUR PRIOR TO ISSUANCE OF BUILDING PERMITS.

## T.O.V. PLANNING NOTES:

1. EXISTING ZONING IS PAD (PLANNED AREA DEVELOPMENT, RANCHO VISTOSO), HIGH DENSITY RESIDENTIAL, AND WILL REMAIN.
2. NO BUILDING SHALL EXCEED 3-STORIES & THE EXTERIOR HEIGHT SHALL NOT EXCEED THIRTY-FOUR (34) FEET.
3. THE PROPOSED COMMON AREAS ON THIS PROJECT WILL BE OWNED AND MAINTAINED BY A HOME OWNERS ASSOCIATION FOR USE BY THE SUBDIVISION FOR ACCESS, LANDSCAPING AND RECREATION.
4. ALL SIGNAGE AND LIGHTING TO BE ADDRESSED AS PART OF A SEPARATE REVIEW AND APPROVAL PROCESS.
5. THE FOLLOWING CODES AND STANDARDS SHALL BE APPLICABLE TO THIS DEVELOPMENT AS ADOPTED BY THE TOWN OF ORO VALLEY:
  - INTERNATIONAL BUILDING CODES WITH LOCAL AMENDMENTS
  - NATIONAL ELECTRICAL CODE
  - ADA STANDARDS FOR ACCESSIBLE DESIGN
  - GOLDER RANCH FIRE DISTRICT STANDARDS AND FORMS
  - TOWN OF ORO VALLEY POOL CODE
  - PAG STANDARD SPECIFICATIONS AND DETAILS FOR PUBLIC IMPROVEMENTS
  - TOWN OF ORO VALLEY DRAINAGE CRITERIA MANUAL
  - TOWN OF ORO VALLEY SUBDIVISION STREET STANDARDS AND POLICIES MANUAL
  - ORO VALLEY TOWN CODE, CURRENT REVISED
6. RETAINING WALLS, ANY STRUCTURE USED TO RETAIN SLOPES SHALL BE DESIGNED TO BLEND WITH THE SURROUNDING NATURAL COLORS OF THE NATIVE ROCK AND SOILS OF THE SITE. THE SURFACE SHALL BE ROUGH TEXTURED WITH HEAVY SHADOW PATTERNS, WHICH MAY BE ACHIEVED BY COLOR-TREATED OR VENEERED SURFACES (OR OTHER METHODS APPROVED BY THE TOWN).

## OPEN SPACE AREA CALCULATIONS

|                                                                |                             |
|----------------------------------------------------------------|-----------------------------|
| NATURAL OPEN SPACE (PORTION OF CA "C")                         | 16,271 S.F.                 |
| LANDSCAPE AREA (PORTION OF CA "O")                             | 26,012 S.F.                 |
| RECREATIONAL AREA (CA "B")                                     | 4,227 S.F.                  |
| TOTAL OPEN SPACE (MINIMUM 30% REQUIRED PER RANCHO VISTOSO PAD) | 46,510 S.F. (30.4% OF SITE) |

- A.P.N: 219-20-001C
- JURISDICTION: TOWN OF ORO VALLEY
- MIN. LOT AREA PER DWELLING UNIT: 2,000 S.F.
- REQUIRED PERIMETER YARD SETBACKS:
  - FRONT: 20'
  - SIDE: 5' (0 FOR COMMON WALLS)
  - REAR: 5'
- REQUIRED SEPARATION BETWEEN BUILDINGS:
  - (STRUCTURE SEPARATION PER R-6 STANDARDS)
  - BETWEEN 2 SINGLE STORY BUILDINGS: 10'
  - BETWEEN A SINGLE STORY AND A TWO STORY BUILDING: 15'
  - BETWEEN 2 - TWO STORY BUILDINGS: 20'
- PROVIDED SEPARATION BETWEEN BUILDINGS: 10'
- REQUIRED BUFFERYARDS:
  - ALONG RANCHO VISTOSO: 25' TYPE B
  - ALONG MORNING VISTA: 15' TYPE A
  - ALONG ADJACENT RESIDENTIAL: NONE

## VEHICULAR PARKING CALCULATIONS

|                                    | REQUIRED | PROVIDED              |
|------------------------------------|----------|-----------------------|
| RESIDENTIAL PARKING -              |          |                       |
| 1.75 SPACES PER DWELLING UNIT      | 32       | (IN ATTACHED GARAGES) |
| 18 X 1.75 = 32 SPACES              |          |                       |
| VISITOR PARKING -                  |          |                       |
| 1 SPACE PER EVERY 4 DWELLING UNITS | 5        | 5                     |
| 18 / 4 = 5 SPACES                  |          |                       |

## GRADING CALCULATIONS

GRADABLE AREA  
(PARCEL AREA MINUS 25% SLOPES) = 142,520 S.F.  
25% SLOPE DISTURBANCE AREA = 4,922 S.F.  
(3.45% OF GRADABLE AREA)  
PROVIDED TRADE AREA = 16,271 S.F.

## T.O.V. ENGINEERING NOTES:

1. THE DESIGN SPEED FOR THIS PROJECT IS 25 MPH AND THE DESIGN VEHICLE TO BE USED FOR THIS PROJECT IS A WB-40.
2. ALL NEW PUBLIC ROADS WITHIN AND ADJACENT TO THIS PROJECT WILL BE CONSTRUCTED IN ACCORDANCE WITH APPROVED PLANS. SEPARATE PUBLIC IMPROVEMENT AND CONSTRUCTION PLANS WILL BE SUBMITTED TO THE TOWN ENGINEER'S OFFICE FOR REVIEW AND APPROVAL.
3. ANY RELOCATION OR MODIFICATION OF EXISTING UTILITIES AND/OR PUBLIC IMPROVEMENTS NECESSITATED BY THE PROPOSED DEVELOPMENT WILL BE AT NO EXPENSE TO THE PUBLIC.
4. THE BASIS OF BEARING FOR THIS PROJECT IS, ACCORDING TO BOOK 51 OF MAPS AND PLATS AT PAGE 8, PIMA COUNTY, ARIZONA BETWEEN MONUMENTS FOUND ON THE CENTERLINE OF RANCHO VISTOSO BOULEVARD, AS SHOWN.
5. THE BASIS OF ELEVATION FOR THIS PROJECT IS THE PIMA COUNTY OPUS CONTROL POINT R21, A  $\frac{1}{8}$ " REBAR NORTH EDGE OF CONCRETE WALK NORTH SIDE OF VISTOSO HIGHLANDS DRIVE. ELEVATION BEING: 2950.40' DATUM: NAVD88
6. MATERIALS WITHIN SIGHT VISIBILITY TRIANGLES MUST BE PLACED SO AS NOT TO INTERFERE WITH A SIGHT PLANE DESCRIBED BY TWO HORIZONTAL LINES LOCATED THIRTY (30) INCHES AND SEVENTY-TWO (72) INCHES ABOVE FINISHED GRADE OF THE ROADWAY SURFACE.
7. CIVIL IMPROVEMENT PLAN MUST BE APPROVED PRIOR TO THE ISSUANCE OF ANY PERMITS BY THE TOWN ENGINEER AND/OR BUILDING OFFICIAL.
8. ALL WEATHER ACCESS MUST BE PROVIDED TO ALL LOTS WITHIN THE SUBDIVISION.

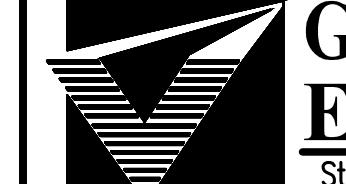
## T.O.V. DRAINAGE NOTES

1. ALL DRAINAGEWAYS WILL BE CONSTRUCTED ACCORDING TO APPROVED PLANS PRIOR TO THE ISSUANCE OF ANY BUILDING PERMITS FROM THE BUILDING OFFICIAL FOR PARCELS AFFECTED BY REGULATORY FLOODPLAIN. PARCELS AFFECTED BY REGULATORY FLOODPLAIN MUST BE SPECIFICALLY IDENTIFIED EITHER BY NUMBER, IN NOTE OR BY OUTLINE ON THE DEVELOPMENT PLAN.
2. DRAINAGE MUST BE COLLECTED AND RELEASED FROM A PROPOSED DEVELOPMENT AT THE LOCATIONS AND IN THE MANNER EXISTING PRIOR TO DEVELOPMENT.
3. DRAINAGEWAYS MUST BE PROVIDED WHERE NECESSARY TO CARRY DRAINAGE FLOWS THROUGH OR FROM THE DEVELOPMENT AND SUCH DRAINAGEWAYS MUST BE DEDICATED AND MAINTAINED BY PROPERTY OWNERS OR PROPERTY OWNER'S ASSOCIATION.
4. ALL DRAINAGEWAYS, DRAINAGE STRUCTURES AND DETENTION BASINS ARE PROVIDED WITH ADEQUATE MAINTENANCE ACCESS AND ARE INCLUDED AS PART OF ANY DRAINAGE EASEMENT.
5. DRAINAGEWAYS MUST BE DESIGNED TO NOT DISCHARGE ONTO PAVED STREETS, EASEMENTS OR PARKING AREAS.
6. PARKING AREAS MUST NOT BE USED AS DETENTION BASINS.
7. ALL DRAINAGE STRUCTURES SHALL BE INSPECTED AND A SUMMARY REPORT PREPARED A MINIMUM OF ONCE EACH YEAR IN ACCORDANCE WITH THE PROCEDURES IN THE APPROVED DRAINAGE REPORT. COPIES OF THE ANNUAL INSPECTION REPORTS SHALL BE MADE AVAILABLE TO THE TOWN UPON REQUEST.
8. ALL DRAINAGE STRUCTURES SHALL BE INSPECTED AND A SUMMARY REPORT PREPARED BY AN ARIZONA REGISTERED CIVIL ENGINEER A MINIMUM OF ONCE EVERY FIVE YEARS IN ACCORDANCE WITH THE PROCEDURES IN THE APPROVED DRAINAGE REPORT. COPIES OF THE 5-YEAR ANNUAL INSPECTION REPORTS SHALL BE MADE AVAILABLE TO THE TOWN UPON REQUEST. THE REPORT SHALL IDENTIFY THE MAINTENANCE NEEDS FOR THE NEXT 5-YEAR PERIOD, INCLUDING AN ANTICIPATED ANNUAL COST OF MAINTENANCE AND REPAIR.

## ORO VALLEY WATER UTILITY NOTES

1. ORO VALLEY WATER UTILITY WILL BE THE WATER SERVICE PROVIDER.
2. THIS DEVELOPMENT MUST COMPLY WITH THE ORO VALLEY WATER UTILITY SPECIFICATIONS MANUAL DURING ALL PHASES OF CONSTRUCTION.
3. THIS PROJECT WILL BE SERVED BY ORO VALLEY WATER UTILITY WHICH HAS BEEN DESIGNATED AS HAVING AN ASSURED 100 YEAR WATER SUPPLY BY THE DIRECTOR OF WATER RESOURCES.
4. ALL WELLS MUST BE ABANDONED PER ADWR REGULATIONS.
5. A LINE EXTENSION AGREEMENT MUST BE IN PLACE PRIOR TO ANY PUBLIC WATER INFRASTRUCTURE CONSTRUCTION WORK COMMENCING FOR THIS PROJECT.

6. WATER INFRASTRUCTURE AS REPRESENTED ON THE PLAT OR DEVELOPMENT PLAN IS FOR INFORMATIONAL PURPOSES ONLY. A SEPARATE PUBLIC WATER IMPROVEMENT PLAN MUST BE SUBMITTED TO THE ORO VALLEY WATER UTILITY FOR TECHNICAL REVIEW AND COMPLIANCE WITH APPLICABLE STATUTES, CODES AND SPECIFICATIONS. ADDITIONAL PUBLIC WATER INFRASTRUCTURE MAY BE DEEMED NECESSARY UPON REVIEW OF THE PUBLIC WATER IMPROVEMENT PLAN SUBMITTAL.


## GOLDER RANCH FIRE GENERAL NOTES

1. APPROVED FIRE APPARATUS ACCESS ROADWAYS AND FIRE HYDRANTS CONNECTED TO AN APPROVED WATER SUPPLY OF 1500 GPM FOR FIRE PROTECTION MUST BE INSTALLED AND IN SERVICE PRIOR TO COMBUSTIBLE MATERIAL DELIVERY TO THE SITE. TEMPORARY CONSTRUCTION OFFICE TRAILERS ARE CONSIDERED COMBUSTIBLE MATERIAL.
2. ROADWAYS SHALL BE SURFACED WITH AN ALL-WEATHER MATERIAL CAPABLE OF SUPPORTING AN IMPOSED LOAD OF 82,000 POUNDS.
3. TEMPORARY STREET SIGNS MUST BE INSTALLED AT EACH STREET INTERSECTION WHEN CONSTRUCTION OF NEW ROADWAYS ALLOWS PASSAGE OF VEHICLES. ALL STRUCTURES UNDER CONSTRUCTION MUST BE CLEARLY IDENTIFIED WITH AN APPROVED ADDRESS.
4. ELECTRIC GATE OPERATORS SHALL BE LISTED IN ACCORDANCE WITH UL 325. GATES INTENDED FOR AUTOMATIC OPERATION SHALL BE DESIGNED, CONSTRUCTED AND INSTALLED TO COMPLY WITH THE REQUIREMENTS OF ASTM F 2200.

## ABBREVIATIONS

|        |                                                |        |                                                 |
|--------|------------------------------------------------|--------|-------------------------------------------------|
| ABC    | AGGREGATE BASE COARSE                          | N      | NORTH                                           |
| AC     | ASPHALTIC CONCRETE                             | NAVD   | NORTH AMERICAN VERTICAL DATUM                   |
| ADEQ   | ARIZONA DEPARTMENT OF ENVIRONMENTAL QUALITY    | NE     | NORTHEAST                                       |
| ALT    | ALTERNATE                                      | NO     | NUMBER                                          |
| ANSI   | AMERICAN NATIONAL STANDARDS INSTITUTE          | NOI    | NOTICE OF INTENT                                |
| APC    | AUTOMATED PLASTIC CONTAINER                    | NTS    | NOT TO SCALE                                    |
| ARCH   | ARCHITECTURAL                                  | NW     | NORTHWEST                                       |
| ARS    | AMERICAN REVISED STATUTES                      | OC     | ON CENTER                                       |
| ASTM   | AMERICAN SOCIETY FOR TESTING AND MATERIALS     | OV     | ORO VALLEY                                      |
| AZPDES | ARIZONA POLLUTANT DISCHARGE ELIMINATION SYSTEM | PC/COT | PIMA COUNTY/CITY OF TUCSON                      |
| BC     | BACK OF CURB                                   | P      | PAVEMENT                                        |
| BCS    | BUSINESS CONNECTION                            | PCC    | PORTLAND CEMENT CONCRETE                        |
| SEWER  |                                                | PDSD   | PLANNING & DEVELOPMENT SERVICES                 |
| BK     | BOOK                                           | PE     | POLYETHYLENE                                    |
| BLDG   | BUILDING                                       | PG     | PAGE                                            |
| BLVD   | BOULEVARD                                      | PN     | PLAN NUMBER                                     |
| C      | CONCRETE, COMPUTED                             | PSI    | POUNDS PER SQUARE INCH                          |
| CF     | CUBIC FEET                                     | PUE    | PUBLIC UTILITY EASEMENT                         |
| CFS    | CUBIC FEET PER SECOND                          | PVC    | POLYVINYL CHLORIDE                              |
| CI     | CAST IRON                                      | PVMT   | PAVEMENT                                        |
| CLR    | CLEAR                                          | R      | RANGE, RADIUS, RECORD                           |
| CMU    | CONCRETE MASONRY UNIT                          | RCP    | REINFORCED CONCRETE PIPE                        |
| CONC   | CONCRETE                                       | RD     | ROAD                                            |
| COT    | CITY OF TUCSON                                 | RLS    | REGISTERED LAND SURVEYOR                        |
| CY     | CUBIC YARDS                                    | ROW    | RIGHT-OF-WAY                                    |
| DIP    | DUCTILE IRON PIPE                              | RWWD   | REGIONAL WASTEWATER RECLAMATION DEPARTMENT      |
| DKT    | DOCKET                                         | S      | SLOPE, SOUTH, SECTION                           |
| DTL    | DETAIL                                         | SE     | SOUTHEAST                                       |
| DR     | DRIVE                                          | SEQ    | SEQUENCE                                        |
| E      | EAST                                           | SF     | SQUARE FEET                                     |
| EG     | EXISTING GRADE                                 | SSPI   | STANDARD SPECIFICATIONS FOR PUBLIC IMPROVEMENTS |
| ELEV   | ELEVATION                                      | STD    | STANDARD                                        |
| EQUIV  | EQUIVALENT                                     | SVT    | SIGHT VISIBILITY TRIANGLE                       |
| EXIST  | EXISTING                                       | SW     | SIDEWALK, SOUTHWEST                             |
| FC     | FACE OF CURB                                   | SWR    | SEWER                                           |
| FFE    | FINISHED FLOOR ELEVATION                       | SWPPP  | STORM WATER POLLUTION PREVENTION PLAN           |
| FG     | FINISHED GRADE                                 | T      | TOWNSHIP                                        |
| FT     | FEET                                           | TC     | TOP OF CURB                                     |
| G      | GUTTER                                         | TYP    | TYPICAL                                         |
| G&SRM  | GILA & SALT RIVER MERIDIAN                     | TW     | TOP OF WALL                                     |
| GA     | Gauge                                          | UDC    | UNIFIED DEVELOPMENT CODE                        |
| GAL    | GALLONS                                        | UNO    | UNLESS NOTED OTHERWISE                          |
| GFA    | GROSS FLOOR AREA                               | VCP    | VITRIFIED CLAY PIPE                             |
| HDPE   | HIGH-DENSITY POLYETHYLENE                      | VERT   | VERTICAL                                        |
| IBC    | INTERNATIONAL BUILDING CODE                    | W      | WEST, WIDTH                                     |
| ICC    | INTERNATIONAL CODE COUNCIL                     | WK     | WEEK                                            |
| INV    | INVERT                                         | WSEL   | WATER SURFACE ELEVATION                         |
| L      | LENGTH                                         | WTR    | WATER                                           |
| LBS    | POUNDS                                         | WWF    | WELDED WIRE FABRIC                              |
| LF     | LINEAR FEET                                    | YR     | YEAR                                            |
| LP     | LOOP                                           |        |                                                 |
| M      | MEASURED                                       |        |                                                 |
| M&P    | MAPS & PLATS                                   |        |                                                 |
| MAG    | MARICOPA ASSOCIATION OF GOVERNMENTS            |        |                                                 |
| MAX    | MAXIMUM                                        |        |                                                 |
| ME     | MATCH EXISTING                                 |        |                                                 |
| MIN    | MINIMUM                                        |        |                                                 |

REF.: 2003075

|                                                                                                                                                                                          |      |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|
| Rev #                                                                                                                                                                                    | Date | Description |
|  <b>GRENIER</b><br><b>ENGINEERING, INC.</b><br><i>Structural &amp; Civil Engineering Consultant</i> |      |             |
| 6300 E. El Dorado Plaza Suite A120, Tucson, Arizona 85715<br>Phone: 520.326.7082 ~ Fax: 520.326.7508                                                                                     |      |             |
| Sheet Name: <b>NOTES</b>                                                                                                                                                                 |      |             |
| Checked By: <b>JM</b>                                                                                                                                                                    |      |             |
| Date: <b>3/6/2023</b>                                                                                                                                                                    |      |             |
| Scope Vt: <b>N/A</b> Has Notes: <b>NO</b>                                                                                                                                                |      |             |
| Project: <b>RESIDENCES AT MORNING VISTA</b>                                                                                                                                              |      |             |
| Sheet Number: <b>C1.1</b>                                                                                                                                                                |      |             |
| LOTS 1 - 18 AND COMMON AREAS "A" THROUGH "C"<br>A PORTION OF THE SW QTR. SECTION 24, T-11-S,<br>R-13-E G&SRM, TOWN OF ORO VALLEY, PIMA<br>COUNTY, ARIZONA 85755                          |      |             |

THIS DRAWING IS NOT TO BE USED FOR CONSTRUCTION PURPOSES UNTIL SEALED AND SIGNED BY ENGINEER OF RECORD. REUSE OR REPRODUCTION WITHOUT WRITTEN PERMISSION IS PROHIBITED.

## T.O.V. GENERAL GRADING NOTES

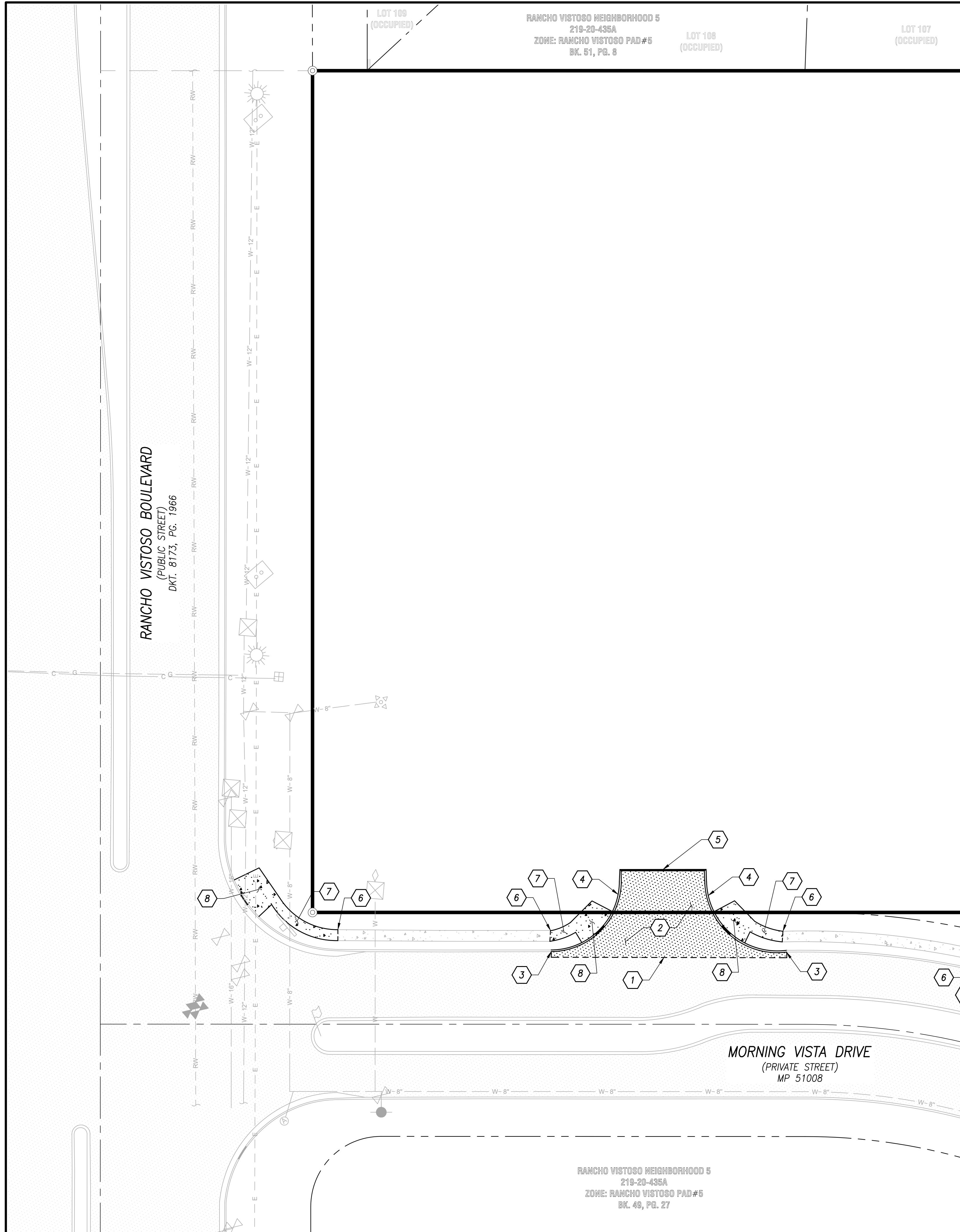
- ALL MATERIALS AND WORKMANSHIP ARE TO BE IN ACCORDANCE WITH PIMA ASSOCIATION OF GOVERNMENTS STANDARD SPECIFICATIONS FOR PUBLIC IMPROVEMENTS (P.A.G. S.S.P.I.), EDITION OF 2003, EXCEPT AS MODIFIED HEREBY.
- ALL CONSTRUCTION AND TESTING METHODS SHALL BE IN CONFORMANCE WITH P.A.G. S.S.P.I., EDITION OF 2003, EXCEPT AS MODIFIED HEREBY.
- ALL WORK SHALL BE IN CONFORMANCE TO GRADING STANDARDS, CHAPTER 15 OF THE ORO VALLEY ZONING CODE REVISED.
- EXCAVATION AND BACKFILL FOR STRUCTURES SHALL CONFORM TO P.A.G. S.S.P.I., SECTION 203-5.
- ALL CONCRETE SHALL CONFORM TO P.A.G. S.S.P.I., SECTION 1006, CLASS S, 3,000-PSI COMPRESSIVE STRENGTH AT 28 DAYS, UNLESS OTHERWISE SPECIFIED.
- A STAMPED SET OF APPROVED PLANS SHALL BE KEPT IN AN EASILY ACCESSIBLE LOCATION ON THE JOB SITE AT ALL TIMES OR DURING CONSTRUCTION.
- CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION REGULATIONS.
- CONTRACTOR SHALL CALL BLUE STAKE (1-800-782-5348) TO VERIFY LOCATION OF ALL UTILITIES PRIOR TO COMMENCEMENT OF CONSTRUCTION.
- CONTRACTORS SHALL OBTAIN ALL PERMITS REQUIRED BY GOVERNMENTAL AGENCIES.
- UPON COMMENCEMENT OF WORK, TRAFFIC CONTROL DEVICES SHALL BE POSTED AND MAINTAINED BY THE CONTRACTOR UNTIL SUCH TIME AS THE WORK IS COMPLETED. ALL WARNING SIGNS, BARRICADES, ETC., SHALL BE IN ACCORDANCE WITH THE MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES ADOPTED BY THE STATE OF ARIZONA PURSUANT TO A.R.S 28-650.
- IF UNANTICIPATED CONDITIONS ARE ENCOUNTERED DURING THE COURSE OF CONSTRUCTION AND ARE BEYOND THE SCOPE OF THE DESIGN, THE ENGINEER SHALL SUBMIT THE NECESSARY REVISED OR SUPPLEMENTAL IMPROVEMENT PLANS FOR REVIEW AND APPROVAL BY THE TOWN OF ORO VALLEY PRIOR TO SUCH REVISIONS/CHANGES BEING MADE IN THE FIELD.
- ALL STATIONING SHOWN ON PLAN AND PROFILE ARE ALONG CONSTRUCTION CENTERLINE UNLESS OTHERWISE NOTED.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE CARE AND MAINTENANCE OF EXISTING IMPROVEMENTS AND VEGETATION IN THE WORK AREA. PAVEMENT, CURBS, CART PATHS AND ANY OTHER OBSTRUCTIONS DAMAGED DURING CONSTRUCTION ARE TO BE REPLACED BY THE CONTRACTOR. ANY UNDERGROUND PIPES, IRRIGATION LINES, IRRIGATION CONTROLS, DRAINS, STRUCTURES, OR OBSTRUCTIONS NOT SHOWN ON THESE PLANS SHALL BE MOVED, ALTERED, OR REPAIRED BY THE CONTRACTOR WHEN ENCOUNTERED, AS DIRECTED BY THE ENGINEER, AND IS A DEFINITE PART OF THIS PROJECT.
- ACCEPTANCE OF THESE PLANS DOES NOT CONSTITUTE OR IMPLY ACCEPTANCE OF ANY OF THE FOLLOWING:
  - WALL(S), RETAINING OR OTHER TYPE(S).
  - ANY REINFORCED CONCRETE STRUCTURE(S).
  - ANY EMBANKMENT(S) WHOSE PRIMARY PURPOSE IS TO FUNCTION AS A RETENTION/DETENTION STRUCTURE.
 THE ITEMS LISTED ABOVE ARE APPROVED FOR LOCATION ONLY. SEPARATE PLAN CHECKS AND PERMITS ARE REQUIRED, ALL IN ACCORDANCE WITH THE APPLICABLE CODES OF THE TOWN OF ORO VALLEY.
- THE CONTRACTOR SHALL GIVE FORTY-EIGHT (48) HOURS NOTICE WHEN HE SHALL REQUIRE THE SERVICES OF THE ENGINEER OR ANY OTHER PERSON PROPERLY AUTHORIZED FOR SUCH PURPOSE FOR LAYING OUT ANY PORTION OF THE WORK. HE SHALL ALSO DIG ALL STAKE HOLES NECESSARY TO GIVE LINE AND LEVELS AND SHALL PROVIDE ASSISTANCE CALLED FOR BY THE ENGINEER OR HIS ASSISTANTS UPON ANY PART OF THE WORK WHENEVER SO REQUESTED, AND SHALL PRESERVE ALL STAKES SET FOR THE LINES, LEVELS OR MEASUREMENTS OF THE WORK IN THEIR PROPER PLACES UNTIL AUTHORIZED TO REMOVE THEM BY THE ENGINEERS. ANY EXPENSE INCURRED IN REPLACING ANY STAKES WHICH THE CONTRACTOR OR HIS SUBORDINATES MAY HAVE FAILED TO PRESERVE SHALL BE CHARGED TO THE CONTRACTOR.
- IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO FURNISH, HAUL AND APPLY ALL WATER REQUIRED FOR COMPACTION AND FOR THE CONTROL OF DUST FROM CONSTRUCTION ACTIVITY. THE COST THEREOF IS TO BE INCLUDED IN THE GRADING CONSTRUCTION PRICE.
- IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO FULLY COMPLY WITH ADEQ STORMWATER DISCHARGE PERMIT IN ACCORDANCE WITH THE REPORT AND POLLUTION PLANS PREPARED BY THE ENGINEER. THE COST THEREOF TO BE INCLUDED IN THE GRADING CONSTRUCTION PRICE.
- BUILDING SITES SHALL BE CONSTRUCTED TO WITHIN 0.10 FOOT OF FINISH BUILDING PAD ELEVATIONS AS STAKED BY THE ENGINEER. STREETS AND PARKING AREAS SHALL BE CONSTRUCTED TO WITHIN +0.10 FEET OF FINISH SUBGRADE AS STAKED BY THE ENGINEER.
- A REPORT OF SOILS INVESTIGATIONS HAS BEEN PREPARED FOR THIS PROJECT SEE ENGINEER'S NOTE #2.
- THE SOILS ENGINEER SHALL OBSERVE, INSPECT AND TEST ALL CONSTRUCTION OPERATIONS, INCLUDING BUT NOT LIMITED TO: CLEARING, GRUBBING, SUBGRADE PREPARATION, STRUCTURAL, TRENCH EXCAVATION AND BACKFILL, MATERIAL TESTING, TOGETHER WITH PLACEMENT OF FILL. SAID ENGINEER SHALL CERTIFY IN WRITING, THAT ALL SOILS OPERATIONS AND MATERIALS USED FOR THIS DEVELOPMENT WERE PERFORMED IN ACCORDANCE WITH THE RECOMMENDATIONS AS SET FORTH IN THE GEOTECHNICAL INVESTIGATION OF RECORD AND ARE IN CONFORMANCE WITH THE ACCEPTED PLANS AND SPECIFICATIONS. CERTIFICATION, IN WRITING, IS TO BE RECEIVED BY THE TOWN OF ORO VALLEY PRIOR TO THE REQUEST FOR FINAL INSPECTION AND RELEASE OF ASSURANCES.

## T.O.V. GENERAL GRADING NOTES - CONT.

- GRADING BOUNDARIES SHALL BE CLEARLY MARKED, AND ALL WORK WILL BE CONFINED TO APPROVED PROJECT LIMITS AS SHOWN ON THESE PLANS.
- IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR AND/OR THE SURVEYOR PROVIDING THE CONSTRUCTION LAYOUT TO VERIFY THE BENCHMARK AND COMPARE THE SITE CONDITIONS WITH THE PLANS AND SHALL NOTIFY THE ENGINEER OF ANY DISCREPANCIES OBSERVED. SHOULD ANY BENCHMARK, GRADE OR DESIGN INDICATED ON THE PLANS BE SUSPECT, THE ENGINEER SHALL BE NOTIFIED OF SAID BENCHMARK, GRADE OR DESIGN PROBLEM AT LEAST TWENTY-FOUR HOURS BEFORE CONSTRUCTION IS SCHEDULED TO BEGIN ON THE AFFECTED AREA.
- IT SHALL BE THE SOLE RESPONSIBILITY OF THE OWNER(S), THEIR SUCCESSORS OR ASSIGNS, (AND/OR THEIR CONTRACTOR, THEIR SUCCESSORS OR ASSIGNS AS APPLICABLE) TO PURSUE ANY NEGOTIATIONS, OBTAIN ANY AGREEMENTS AND/OR PERMITS, ETC., FROM ALL NECESSARY OWNERS, PRIVATE AND/OR GOVERNMENTAL AGENCIES IN CHARGE OF PROPERTIES AND/OR RIGHTS-OF-WAY ADJACENT TO (OR NEIGHBORING) THIS PROJECT, THAT MAY BE REQUIRED TO DO ANY WORK (CONSTRUCTION, ACCESS, MODIFICATIONS, GRADING, DRAINAGE, STRUCTURES, ROADS, ETC.,) ENCRISING OR AFFECTING - DIRECTLY OR INDIRECTLY - ON THESE ADJACENT PROPERTIES AND RIGHTS-OF-WAY IN ANY CONCEIVABLE MANNER, REGARDLESS OF WHETHER OR NOT THIS WORK IS SHOWN OR DESCRIBED ON THESE PLANS (OR) ON THIS PLAT.
- THE PROFESSIONAL ENGINEER OF RECORD SHALL SUBMIT AS-BUILT RECORD DRAWINGS AND CERTIFY IN WRITING THAT ALL IMPROVEMENTS, WHETHER PRIVATE OR PUBLIC, HAVE BEEN CONSTRUCTED, PLACED, INSTALLED, ETC. IN SUBSTANTIAL CONFORMANCE WITH THE ACCEPTED PLANS FOR THIS DEVELOPMENT. CERTIFICATIONS IN WRITING AND THE AS-BUILT RECORD DRAWINGS ARE TO BE RECEIVED BY THE TOWN OF ORO VALLEY A MINIMUM OF TWO (2) WEEKS PRIOR TO THE REQUEST FOR CERTIFICATES OF OCCUPANCY AND/OR FINAL INSPECTION BY THE DEPARTMENT OF PUBLIC WORKS AND THE RELEASE OF ASSURANCES, EXCEPT FOR MODEL HOMES INTENDED TO BE USED FOR SALES PURPOSES. IF THE PROJECT IS PHASED THE ABOVE PERTAINS TO EACH PHASE.
- FOR THE PROJECT BASIS OF ELEVATION SEE T.O.V. ENGINEERING NOTE #5.
- ALL EASEMENTS MUST BE ACQUIRED BY OWNER/BUILDER PRIOR TO CONSTRUCTION.

## T.O.V. TYPE 2 GRADING STANDARD CONDITIONS

- A COPY OF THE APPROVED GRADING PERMIT, AS WELL AS ANY SPECIAL CONDITIONS, AND A SET OF THE APPROVED GRADING PLANS SHALL BE KEPT IN AN EASILY ACCESSIBLE LOCATION ON THE SITE AT ALL TIMES.
- ANY CHANGES TO THE APPROVED PLANS SHALL REQUIRE THE SUBMITTAL OF A REVISION TO THE TOWN OF ORO VALLEY FOR REVIEW AND APPROVAL PRIOR TO THE CONSTRUCTION OF SAID CHANGES IN THE FIELD.
- EROSION CONTROL MEASURES SHALL BE IMPLEMENTED AND PROPERLY MAINTAINED TO PREVENT EROSION OF SLOPES, AND CLEARED, BRUSHED, GRUBBED OR GRADED AREAS.
- THE CONTRACTOR SHALL INSTALL STABILIZATION DEVICES WHEN NECESSARY TO PREVENT EROSION OR SEDIMENT TRANSPORT FROM THE CONSTRUCTION SITE.
- ALL EXPOSED GRADED AREAS, CUT AND FILL SLOPES SHALL BE RE-VEGETATED, STABILIZED, AND/OR CONSTRUCTED PRIOR TO THE EXPIRATION OF THE GRADING PERMIT. ALL WORK SHALL BE DONE IN ACCORDANCE WITH APPLICABLE REGULATIONS, CODES AND APPROVED PLANS.
- THE TOP OF A CUT SLOPE SHALL BE MADE NOT NEARER TO THE SITE BOUNDARY LINE THAN ONE-FIFTH THE VERTICAL HEIGHT OF CUT, WITH A MINIMUM OF TWO FEET. THE TOE OF A FILL SLOPE SHALL BE MADE NOT NEARER TO THE SITE BOUNDARY THAN ONE-HALF THE VERTICAL HEIGHT OF THE FILL, WITH A MINIMUM OF TWO FEET.
- NO GRADING ACTIVITY SHALL BE ALLOWED IN ANY FLOODPLAIN, EXCEPT AS PROVIDED IN THE TOWN OF ORO VALLEY FLOODPLAIN MANAGEMENT ORDINANCE AND AUTHORIZED BY PERMIT FROM THE TOWN OF ORO VALLEY.
- EARTH AND VEGETATION REMOVED FROM THE SITE SHALL BE DISPOSED OF IN AN APPROVED LOCATION.
- NOISE GENERATED BY CONSTRUCTION, DEMOLITION, EXCAVATION OR GRADING ACCORDING TO THE FOLLOWING RESTRICTIONS.
- CONCRETE, THE POURING OF CONCRETE AND ALL ASSOCIATED WORK MAY BE CONDUCTED FROM APRIL 15 THROUGH OCTOBER 15 BETWEEN THE HOURS OF 5:00 A.M. AND 7:00 P.M. AND FROM OCTOBER 16 THROUGH APRIL 14 BETWEEN THE HOURS OF 6:00 A.M. AND 6:00 P.M. OR AS AUTHORIZED PURSUANT TO AN EXTENDED CONSTRUCTION HOURS WORK PERMIT (ECHWP) ISSUED UNDER ORO VALLEY TOWN CODE SECTION 10-1-4.
- ALL OTHER CONSTRUCTION, WITHIN 500 FT. OF A RESIDENTIAL ZONE, ALL OTHER CONSTRUCTION MAY OCCUR BETWEEN THE HOURS OF 6:00 A.M. AND 6:00 P.M. CONSTRUCTION SITES MORE THAN 500 FT. FROM A RESIDENTIAL ZONE MAY CONDUCT WORK BETWEEN THE HOURS OF 5:00 A.M. AND 6:00 P.M. CONSTRUCTION HOURS MAY BE EXTENDED PURSUANT TO AN ECHWP ISSUED UNDER ORO VALLEY TOWN CODE SECTION 10-1-4. THE DISTANCE FROM A RESIDENTIAL ZONE SHALL BE DETERMINED BY MEASURING FROM ALL PROPERTY LINES OF THE CONSTRUCTION SITE.
- NO VEHICLES OR EQUIPMENT SHALL ENCRONCH ONTO AREAS DESIGNATED TO REMAIN IN A NATURAL STATE ON THE APPROVED FINAL PLAT, DEVELOPMENT PLAN, GRADING, LANDSCAPE OR NATIVE SALVAGE PLANS. POINTS OF ENTRY TO THE SITE DURING GRADING SHALL BE ONLY AS DESIGNATED ON THE APPROVED GRADING PLAN.
- DURING GRADING AND UNTIL RE-VEGETATION OR STABILIZATION HAS TAKEN PLACE, DUST SHALL BE MINIMIZED THROUGH THE APPLICATION OF APPROVED DUST CONTROLS IN ACCORDANCE WITH SECTION 27.9.2A OF THE ORO VALLEY ZONING CODE REVISED (OVZC).
- PUBLIC RIGHTS-OF-WAY, SIDEWALKS AND OTHER IMPROVEMENTS SHALL BE MAINTAINED DURING GRADING IN A NEAT AND CLEAN CONDITION, FREE OF LOOSE SOIL, CONSTRUCTION DEBRIS AND TRASH. ANY DAMAGED AREAS SHALL BE RESTORED TO ORIGINAL APPEARANCE AT NO COST TO THE TOWN OF ORO VALLEY. DEBRIS, FILL MATERIAL OR EQUIPMENT SHALL NOT BE STORED WITHIN A PUBLIC RIGHTS-OF-WAY WITHOUT THE WRITTEN APPROVAL OF THE TOWN ENGINEER.
- THE PERMIT HOLDER SHALL PROVIDE NOTIFICATION TWENTY-FOUR (24) HOURS PRIOR TO AN INSPECTION REQUEST, OR AS SPECIFIED BY THE GRADING PERMIT.
- THE CONTRACTOR SHALL CALL FOR ROUGH GRADING, CERTIFICATION OF THE BUILDING PAD ELEVATION, AND FINAL GRADING INSPECTIONS.
- NOTICE OF VIOLATION, STOP WORK ORDER, AND/OR CITATION MAY BE ISSUED WHENEVER TOWN OF ORO VALLEY DETERMINES THAT THE GRADING DOES NOT COMPLY WITH TOWN OF ORO VALLEY APPROVED PLANS OR PERMIT CONDITIONS.
- A TYPE 2 GRADING PERMIT SHALL BE NULL AND VOID IF THE AUTHORIZED WORK HAS NOT BEEN COMPLETED WITHIN ONE YEAR OF PERMIT ISSUANCE.


## T.O.V. TYPE 2 GRADING SPECIAL CONDITIONS

- A RIGHT-OF-WAY USER PERMIT IS REQUIRED FOR ANY WORK WITHIN THE TOWN RIGHT-OF-WAY.
- PRIOR TO CONSIDERATION FOR CERTIFICATION OF OCCUPANCY (C. OF O.) AND/OR RELEASE OF ASSURANCES.
  - AS-BUILTS OF THE PROJECT WILL NEED TO BE STAMPED BY THE ENGINEER OF RECORD ALONG WITH A LETTER OF SUBSTANTIAL COMPLETION.
  - ALL SURVEILLANCE NOTES WILL BE HANDED IN FROM THE ENGINEER OF RECORD OR HIS REPRESENTATIVE.
- IF DURING THE COURSE OF REVIEWING THE PROJECT THERE ARE MORE THAN 10 PUNCH LIST ITEMS, THE TOWN OF ORO VALLEY WILL CONSIDER THE PROJECT NOT TO BE IN SUBSTANTIAL COMPLETION AND A MEETING WILL BE HELD WITH THE ENGINEER OF RECORD TO DETERMINE THE STATUS OF THE PROJECT AND WHEN FINAL ASSURANCES MAY BE RELEASED.
- THE APPLICANT HEREBY CERTIFIES THAT HE/SHE UNDERSTANDS THAT THE GRANTING OF A GRADING PERMIT DOES NOT GIVE HIM/HER THE AUTHORITY TO COMMENCE CONSTRUCTION OF ANY WATER IMPROVEMENTS OR RELATED WORKS. HE/SHE FURTHER CERTIFIES THAT HE/SHE UNDERSTANDS THAT CONSTRUCTION OF ANY WATER IMPROVEMENTS REQUIRES A PRIOR APPROVAL TO CONSTRUCT ISSUED BY THE PIMA COUNTY DEPARTMENT OF ENVIRONMENTAL QUALITY, PURSUANT TO ARIZONA ADMINISTRATIVE CODE RULE R18-4-505, AND THE SATISFACTION OF ANY OTHER APPLICABLE RULES, REGULATIONS, LAWS OR ORDINANCES.
- A FIELD PRE-CONSTRUCTION MEETING SHALL BE SCHEDULED AT LEAST FIVE (5) WORKING DAYS PRIOR TO THE START OF ANY WATER SYSTEM CONSTRUCTION. CONTACT MARK MOORE, ORO VALLEY WATER UTILITY, 229-5017.
- BY RECEIPT OF THIS PERMIT, THE PROPERTY OWNER/APPLICANT AGREES THAT TOWN OF ORO VALLEY DESIGNEES MAY ENTER ONTO THE PROPERTY IN ORDER TO MAKE INSPECTIONS OF THE PROPERTY FOR COMPLIANCE WITH TOWN OF ORO VALLEY CODES.
- ANY STOCKPILE ON THIS SITE SHALL NOT EXCEED SIX FEET IN HEIGHT AND SHALL BE LOCATED ONLY WITHIN THE APPROVED LIMITS OF GRADING UNDER THIS PERMIT.
- TRASH DUMPSTERS MUST BE PROVIDED FOR TRASH DISPOSAL AT THE CONSTRUCTION SITE. WIRE RECEPTACLES ARE NOT ALLOWED FOR TRASH STORAGE.
- STORMWATER POLLUTION PREVENTION MEASURES SHALL BE INSTALLED PRIOR TO THE ONSET OF CONSTRUCTION ACTIVITIES AND SHALL BE MAINTAINED THROUGHOUT CONSTRUCTION AS DIRECTED BY THE STORMWATER POLLUTION PREVENTION PLAN AND PERMITTED BY ADEQ.
- A STORMWATER PREVENTION PLAN IS PROVIDED FOR THIS SITE. THE PLAN IDENTIFIES THE MINIMUM MEASURES REQUIRED DURING CONSTRUCTION. THE MEASURES SUCH AS CONSTRUCTION ENTRANCE(S), SILT FENCES, AND STRAW BALES HAVE BEEN STABILIZED WITH PERMANENT EROSION CONTROL MEASURES.
- TEMPORARY STORMWATER POLLUTION PREVENTION MEASURES SHALL BE REMOVED AND PROPERLY DISPOSED OF WHEN THE GRADED AREAS HAVE BEEN SATISFACTORILY STABILIZED.
- AS-BUILT PLANS AND ENGINEER AND GEOTECHNICAL LETTER OF CERTIFICATION SHALL BE SUBMITTED A MINIMUM OF TWO WEEKS PRIOR TO THE EXPIRATION DATE OF THE PERMIT AND MUST BE ACCEPTED BY THE TOWN OF ORO VALLEY.
- IN ALL CASES THE TYPE 2 GRADING PERMIT MUST REMAIN ACTIVE UNTIL THE SITE CERTIFICATION HAS BEEN ACCEPTED BY THE TOWN OF ORO VALLEY. APPLICANT SHALL REAPPLY OR EXTEND PERMIT AS NECESSARY.
- IF CULTURAL RESOURCES ARE DISCOVERED DURING DEVELOPMENT, WORK SHALL CEASE UNTIL A QUALIFIED ARCHEOLOGIST INSPECTS THE SITE AND MATERIALS AND MAKES RECOMMENDATIONS REGARDING TREATMENT. IF HUMAN REMAINS ARE DISCOVERED, THE CONTRACTOR SHALL COORDINATE WITH THE TOWN AND THE STATE MUSEUM TO CONTACT RELATED TRIBES OR COMMUNITIES WHO MAY HAVE ANCESTRAL TIES TO THE REMAINS.
- MONTHLY REPORTING IS REQUIRED. REPORTS SHALL CONTAIN:
  - ENGINEER'S OBSERVATION REPORTS
  - MATERIAL (SITE) GEOTECHNICAL REPORTS.

REF.: 2003075

|                                                                                                                                                                                            |      |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|
| Rev #                                                                                                                                                                                      | Date | Description |
|  <p><b>GRENIER</b><br/><b>ENGINEERING, INC.</b><br/>Structural &amp; Civil Engineering Consultant</p> |      |             |
| <p>Job Number: 20124<br/>Designed By: AR/JM<br/>Drawn By: AR<br/>Checked By: JM<br/>Date: 3/6/2023<br/>Scale Vt: N/A HAZS NOTED</p>                                                        |      |             |
| <p><b>NOTES</b></p>                                                                                                                                                                        |      |             |
| <p>Project: <b>RESIDENCES AT MORNING VISTA</b><br/>Sheet Name: <b>C1.2</b><br/>Sheet Number: <b>3 of 17</b></p>                                                                            |      |             |

THIS DRAWING IS NOT TO BE USED FOR CONSTRUCTION PURPOSES UNTIL SEALED AND SIGNED BY ENGINEER OF RECORD. REUSE OR REPRODUCTION WITHOUT WRITTEN PERMISSION IS PROHIBITED.



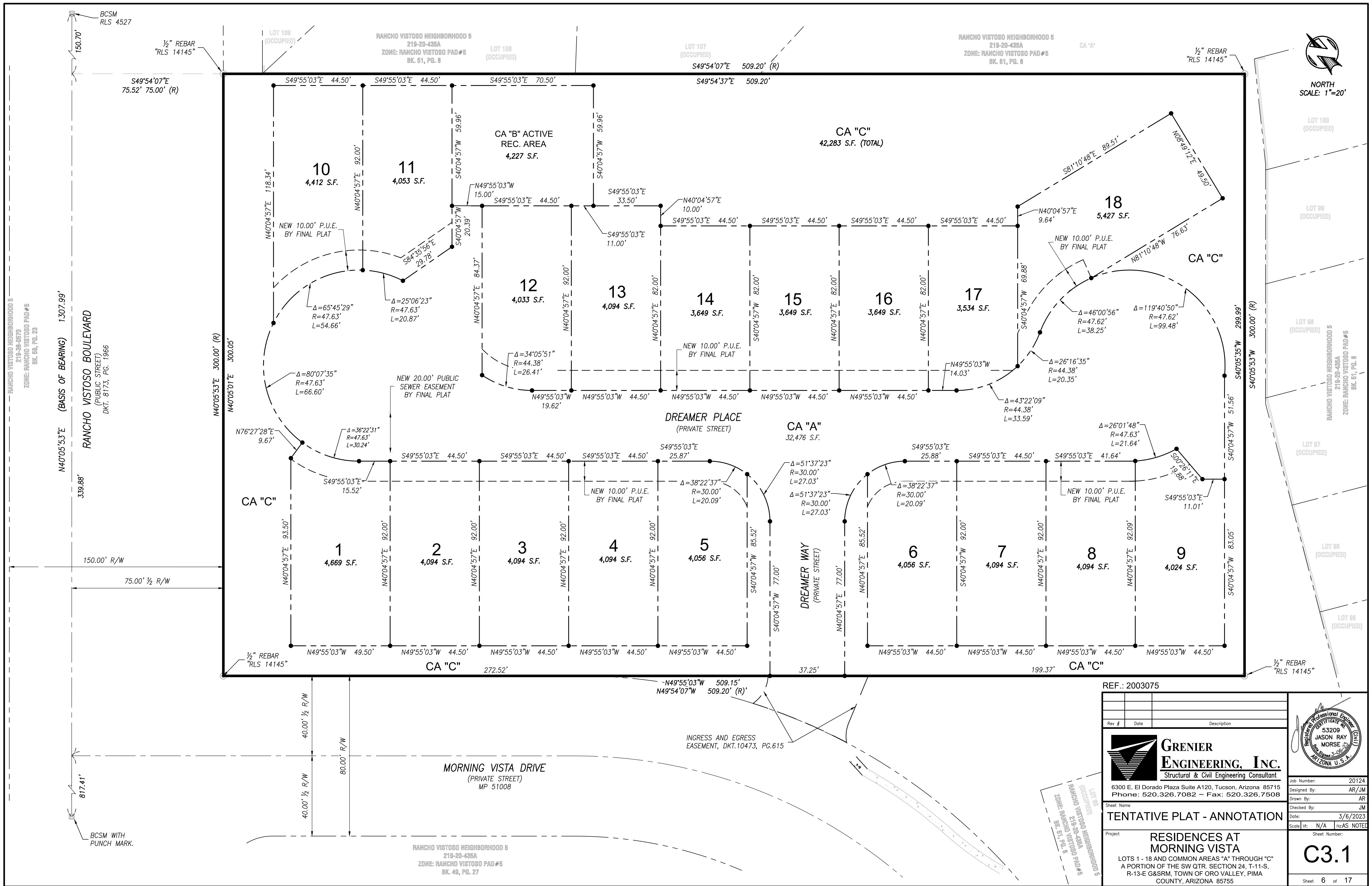
## DEMOLITION NOTES

1. THE CONTRACTOR SHALL OBTAIN ALL PERMITS, INCLUDING DEMOLITION PERMIT, REQUIRED BY GOVERNMENTAL AGENCIES.
2. THE CONTRACTOR IS RESPONSIBLE FOR COMPLYING WITH ALL REGULATIONS AND REQUESTS BY PIMA COUNTY REGARDING DUST POLLUTION.
3. UTILITY LOCATIONS AS SHOWN ON THE PLANS ARE BASED ON A SEARCH OF AVAILABLE RECORDS AND INFORMATION PROVIDED BY THE UTILITY COMPANIES OR AGENCIES. UTILITY LOCATIONS SHOWN ARE APPROXIMATE, AND THERE MAY BE EXISTING UTILITIES WHICH ARE NOT SHOWN ON THESE PLANS; THEREFORE, THE POSSIBILITY OF CONFLICTS WITH UTILITIES IN SERVICE EXISTS. THE CONTRACTOR SHALL CALL "BLUE STAKE CENTER" AT 1-800-782-5348, AT LEAST 48 HOURS PRIOR TO COMMENCING CONSTRUCTION, TO REQUEST VERIFICATION OF THE LOCATION AND ELEVATION OF ALL UTILITIES WITHIN THE WORK AREA. THE CONTRACTOR SHALL BE SOLELY AND COMPLETELY RESPONSIBLE FOR COSTS INCURRED AS A RESULT OF DAMAGE TO UTILITIES CAUSED BY HIS OPERATIONS.
4. THE CONTRACTOR SHALL COORDINATE WITH UTILITY COMPANIES PRIOR TO COMMENCING WORK TO DISCONNECT, SHUT OFF, OR STUB OUT ANY EXISTING UTILITIES AFFECTED BY THE DEMOLITION.
5. THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION REGULATIONS.
6. THE CONTRACTOR AGREES TO PROTECT ALL ADJACENT PROPERTY AND EXISTING IMPROVEMENTS, INCLUDING POSITIVE CONTROL OF EARTH SPILLAGE, CONSTRUCTION WATER, AND RUNOFF WATERS.
7. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE CARE, MAINTENANCE, REPAIR AND/OR REPLACEMENT OF EXISTING IMPROVEMENTS IN THE WORK AREA WHICH HAVE BEEN REMOVED AND/OR DAMAGED DURING THE COURSE OF CONSTRUCTION. ALL REPAIR, REPLACEMENT, AND/OR CLEANUP SHALL BE DONE TO THE SATISFACTION OF THE OWNER.
8. THE CONTRACTOR AGREES THAT HE SHALL ASSUME SOLE AND COMPLETE RESPONSIBILITY FOR JOBSITE CONDITIONS DURING THE COURSE OF THE PROJECT, INCLUDING SAFETY OF ALL PERSONS AND PROPERTY. THIS REQUIREMENT SHALL APPLY CONTINUOUSLY AND NOT BE LIMITED TO NORMAL WORKING HOURS. THE CONTRACTOR SHALL DEFEND, INDEMNIFY AND HOLD THE OWNER AND THE ENGINEER HARMLESS FROM ANY AND ALL LIABILITY, REAL OR ALLEGED, IN CONNECTION WITH THE PERFORMANCE OF WORK ON THIS PROJECT, EXCEPTING FOR LIABILITY ARISING FROM THE SOLE NEGLIGENCE OF THE OWNER OR THE ENGINEER.
9. THE CONTRACTOR SHALL DISPOSE OF ALL DEMOLITION MATERIALS PER CITY AND/OR COUNTY REGULATIONS.
10. AN APPROVED COPY OF THIS PLAN SHALL BE KEPT ON LOCATION AT THE JOBSITE AT ALL TIMES DURING CONSTRUCTION.
11. IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO FURNISH, HAUL AND APPLY ALL WATER REQUIRED FOR THE CONTROL OF DUST FROM DEMOLITION ACTIVITIES. THE COST THEREOF IS TO BE INCLUDED IN THE CONTRACT PRICE.

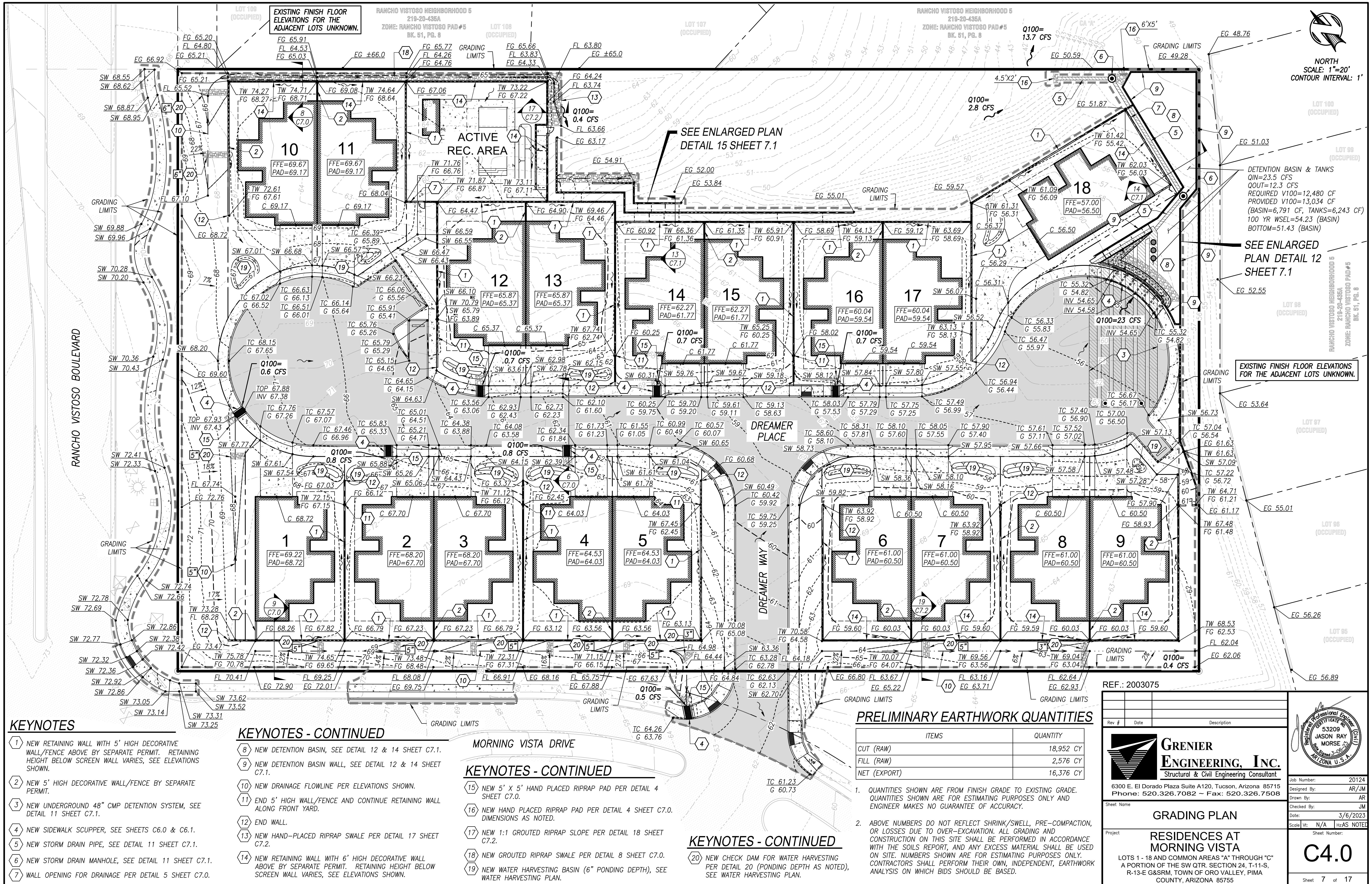
## DEMOLITION NOTES - CONTINUED

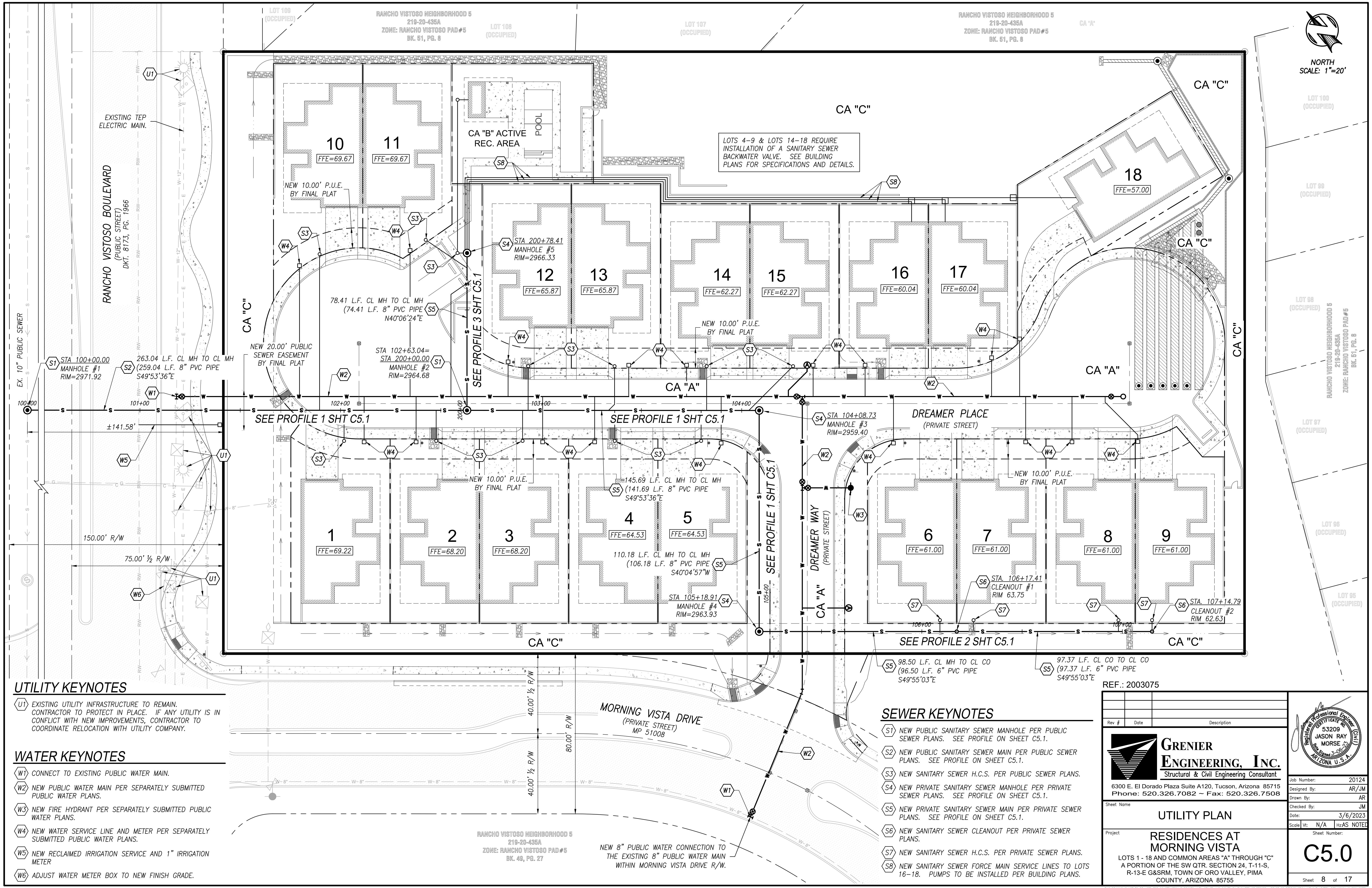
12. THE EXISTENCE AND LOCATION OF ANY EXISTING UNDERGROUND UTILITIES OR STRUCTURES SHOWN ON THESE PLANS WERE OBTAINED BY A SEARCH OF THE AVAILABLE RECORDS. APPROVAL OF THIS PLAN DOES NOT CONSTITUTE A REPRESENTATION OF THE ACCURACY OR COMPLETENESS OF THE LOCATION OR THE EXISTENCE OR NON-EXISTENCE OF ANY UNDERGROUND UTILITY OR STRUCTURE WITHIN THE LIMITS OF THIS PROJECT. THE CONTRACTOR IS REQUIRED TO TAKE ALL PRECAUTIONARY MEANS TO PROTECT ANY UTILITY NOT OF RECORD OR NOT SHOWN ON THESE PLANS. THE CONTRACTOR SHALL VERIFY LOCATIONS AND ELEVATIONS OF ALL UTILITIES PRIOR TO ANY CONSTRUCTION.
13. THE CONTRACTOR SHALL OBTAIN ALL REQUIRED PERMITS FROM PIMA COUNTY DEPARTMENT OF ENVIRONMENTAL QUALITY, INCLUDING DUST CONTROL AND ASBESTOS/NESHAP.
14. THE CONTRACTOR SHALL OBTAIN APPROVAL AND CLEARANCE FROM GOLDER RANCH FIRE DEPARTMENT PRIOR TO PROCEEDING WITH ANY DEMOLITION WORK.
15. REGARDING DEMOLITION OF EXISTING LANDSCAPE IMPROVEMENT, THE CONTRACTOR SHALL:
  - A. CUT AND CAP ALL LANDSCAPE IRRIGATION LINES SERVING PLANTS TO BE REMOVED.
  - B. ENSURE CONTINUED IRRIGATION SERVICE TO PLANT MATERIAL TO REMAIN.
  - C. PROTECT ALL PLANT MATERIAL TO REMAIN: DO NOT COMPACT SOIL OR PLACE CONSTRUCTION EQUIPMENT OR MATERIAL WITHIN THE AREA UNDER THE PLANT CANOPY.
  - D. SALVAGE AND OFFER ALL LANDSCAPE IRRIGATION EQUIPMENT TO THE OWNER.
  - E. ALL STUMPS OF REMOVED TREES MUST BE COMPLETELY REMOVED BELOW GRADE.
  - F. ALL EXISTING BACKFLOW PREVENTORS SHALL BE SALVAGED.
16. CONTRACTOR SHALL COORDINATE WITH WATER DEPARTMENT FOR EXISTING WATER SERVICES TO BE ABANDONED.
17. CONTRACTOR SHALL COORDINATE WITH OWNER AND/OR ARCHITECT FOR MATERIALS TO BE SALVAGED FOR REUSE OR STORAGE.
18. CONTRACTOR MUST PROTECT THE PUBLIC AT ALL TIMES WITH FENCING, BARRICADES, ENCLOSURES, ETC., TO THE BEST PRACTICES AND APPROVED CITY AND/OR COUNTY REGULATIONS.
19. PRIOR TO DEMOLITION OCCURRING, EROSION CONTROL DEVICES ARE TO BE INSTALLED WHERE NECESSARY.
20. CONTINUOUS ACCESS SHALL BE MAINTAINED FOR THE SURROUNDING PROPERTIES AT ALL TIMES DURING DEMOLITION OF THE EXISTING FACILITIES.

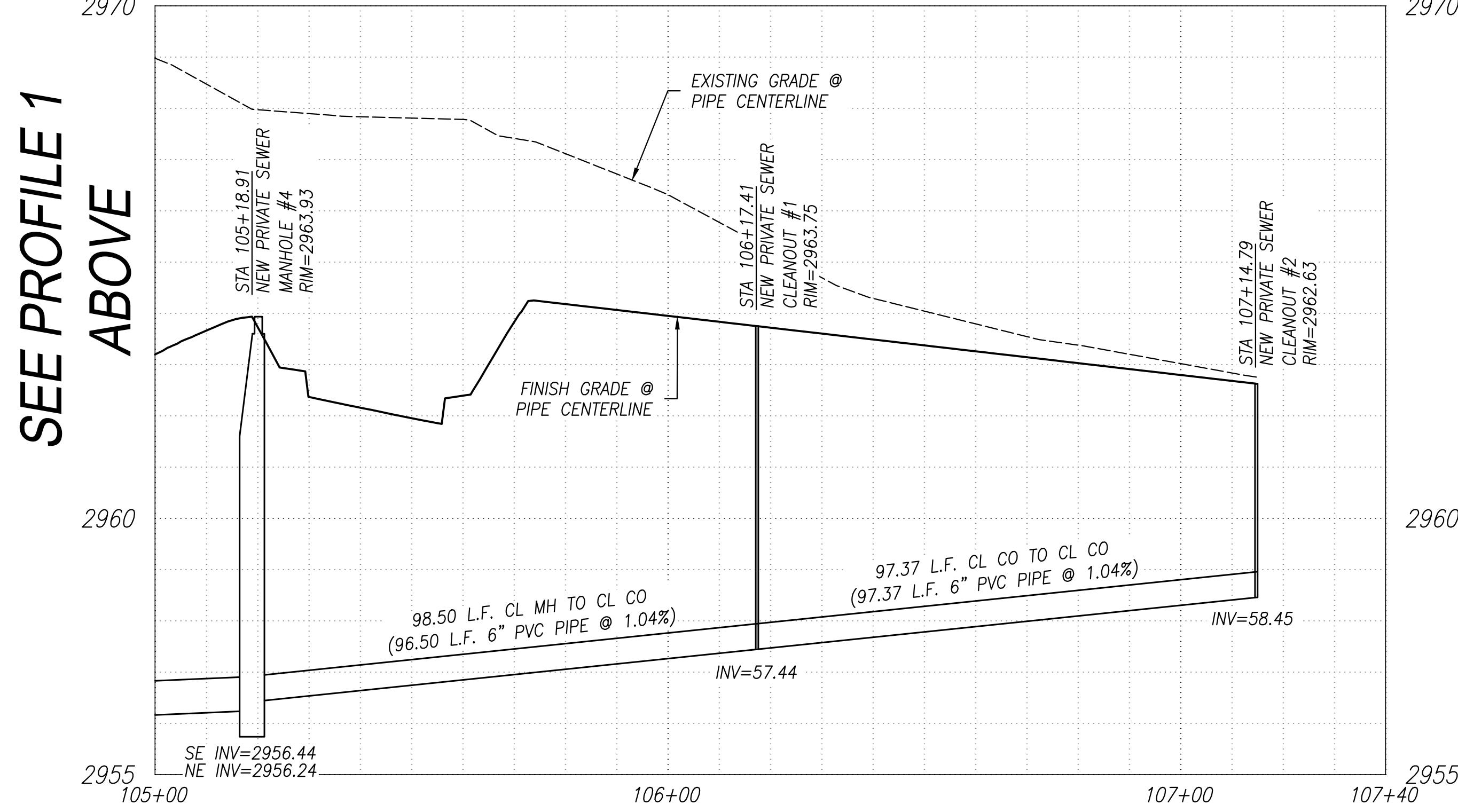
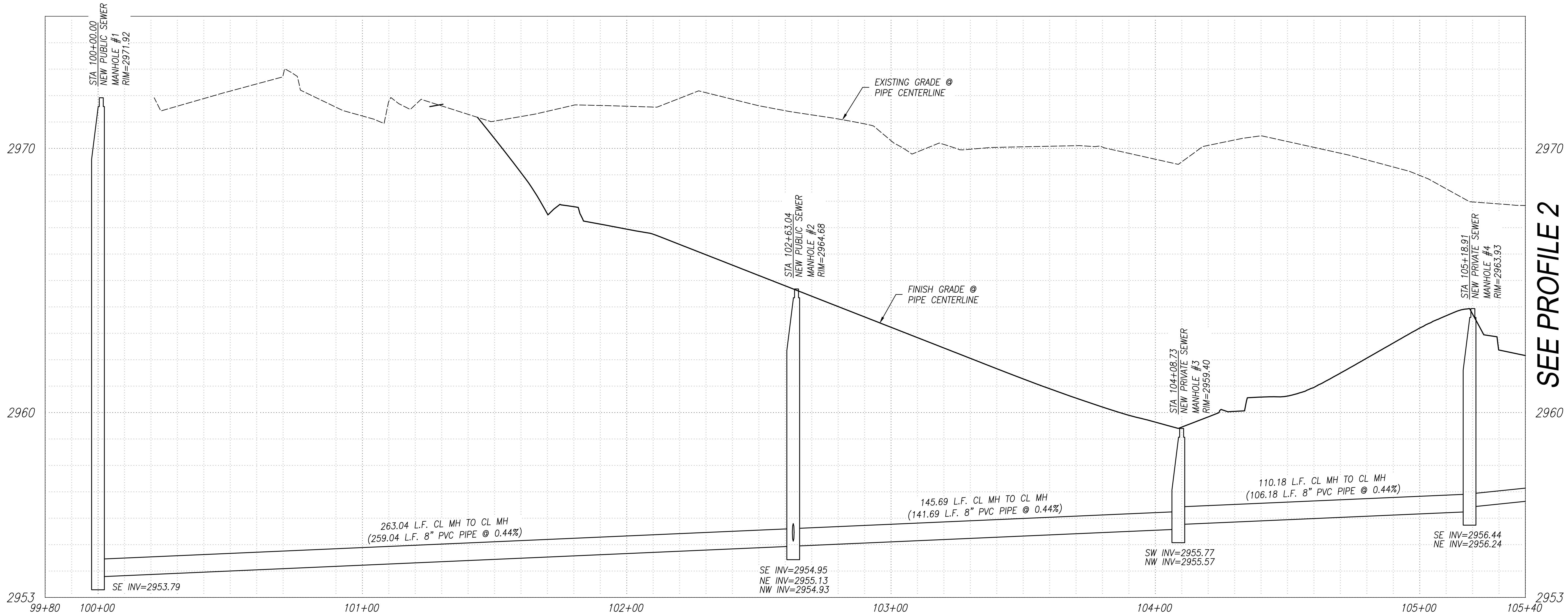
## KEYNOTES


- 1 SAWCUT EXISTING PAVEMENT, SEE HORIZONTAL CONTROL PLAN (C8.0) FOR LIMITS OF NEW CONSTRUCTION.
- 2 EXISTING A.C. PAVEMENT TO BE REMOVED.
- 3 SAWCUT EXISTING CONCRETE VERTICAL CURB, SEE HORIZONTAL CONTROL PLAN (C8.0) AND ROAD PLAN AND PROFILE (C6.0) FOR LIMITS OF NEW CONSTRUCTION.
- 4 EXISTING CONCRETE VERTICAL CURB TO BE REMOVED.
- 5 EXISTING CONCRETE HEADER TO BE REMOVED.
- 6 SAWCUT EXISTING CONCRETE SIDEWALK, SEE HORIZONTAL CONTROL PLAN (C8.0) FOR LIMITS OF NEW CONSTRUCTION.
- 7 EXISTING CONCRETE SIDEWALK TO BE REMOVED.
- 8 EXISTING CURB ACCESS RAMP TO BE REMOVED.

REF.: 2003075


| Rev #                                                                                                                                                                                                   | Date | Description |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|
|  <b>GRENIER<br/>ENGINEERING, INC.</b><br>Structural & Civil Engineering Consultant                                 |      |             |
| 6300 E. El Dorado Plaza Suite A120, Tucson, Arizona 85715<br>Phone: 520.326.7082 ~ Fax: 520.326.7508                                                                                                    |      |             |
| Job Number: 20124<br>Designed By: AR/JM<br>Drawn By: AR                                                                                                                                                 |      |             |
| Sheet Name: DEMOLITION PLAN<br>Checked By: JM<br>Date: 3/6/2023<br>Scale Vt: N/A HAZ NOTED                                                                                                              |      |             |
| Project: RESIDENCES AT MORNING VISTA<br>Lots 1 - 18 and Common Areas "A" through "C"<br>A portion of the SW QTR, SECTION 24, T-11-S,<br>R-13-E G&SRM, TOWN OF ORO VALLEY, PIMA<br>COUNTY, ARIZONA 85755 |      |             |
| Sheet Number: C2.0<br>Sheet 4 of 17                                                                                                                                                                     |      |             |

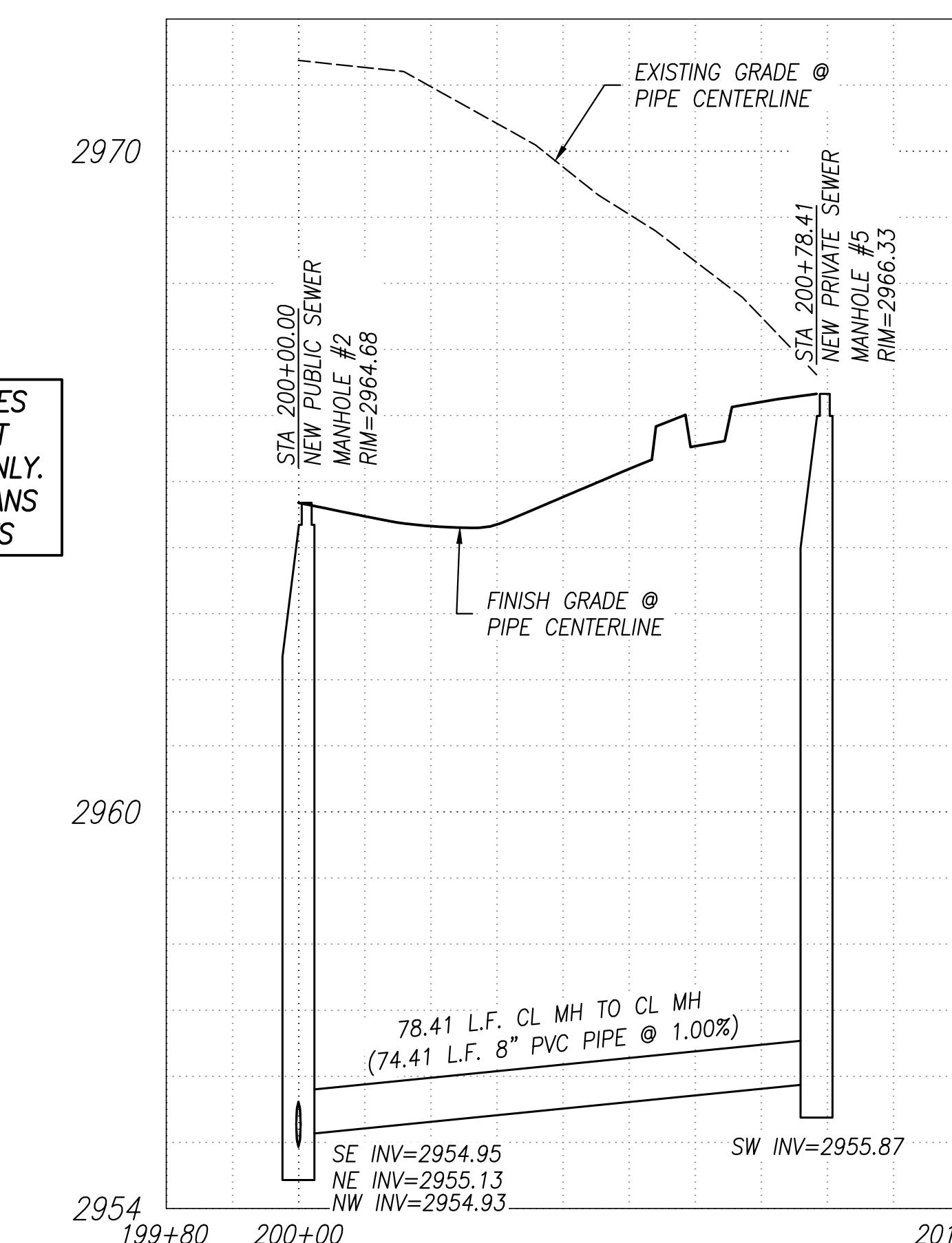

THIS DRAWING IS NOT TO BE USED FOR CONSTRUCTION PURPOSES UNTIL SEALED AND SIGNED BY ENGINEER OF RECORD. REUSE OR REPRODUCTION WITHOUT WRITTEN PERMISSION IS PROHIBITED.




THIS DRAWING IS NOT TO BE USED FOR CONSTRUCTION PURPOSES UNTIL SEALED AND SIGNED BY ENGINEER OF RECORD. REUSE OR REPRODUCTION WITHOUT WRITTEN PERMISSION IS PROHIBITED.





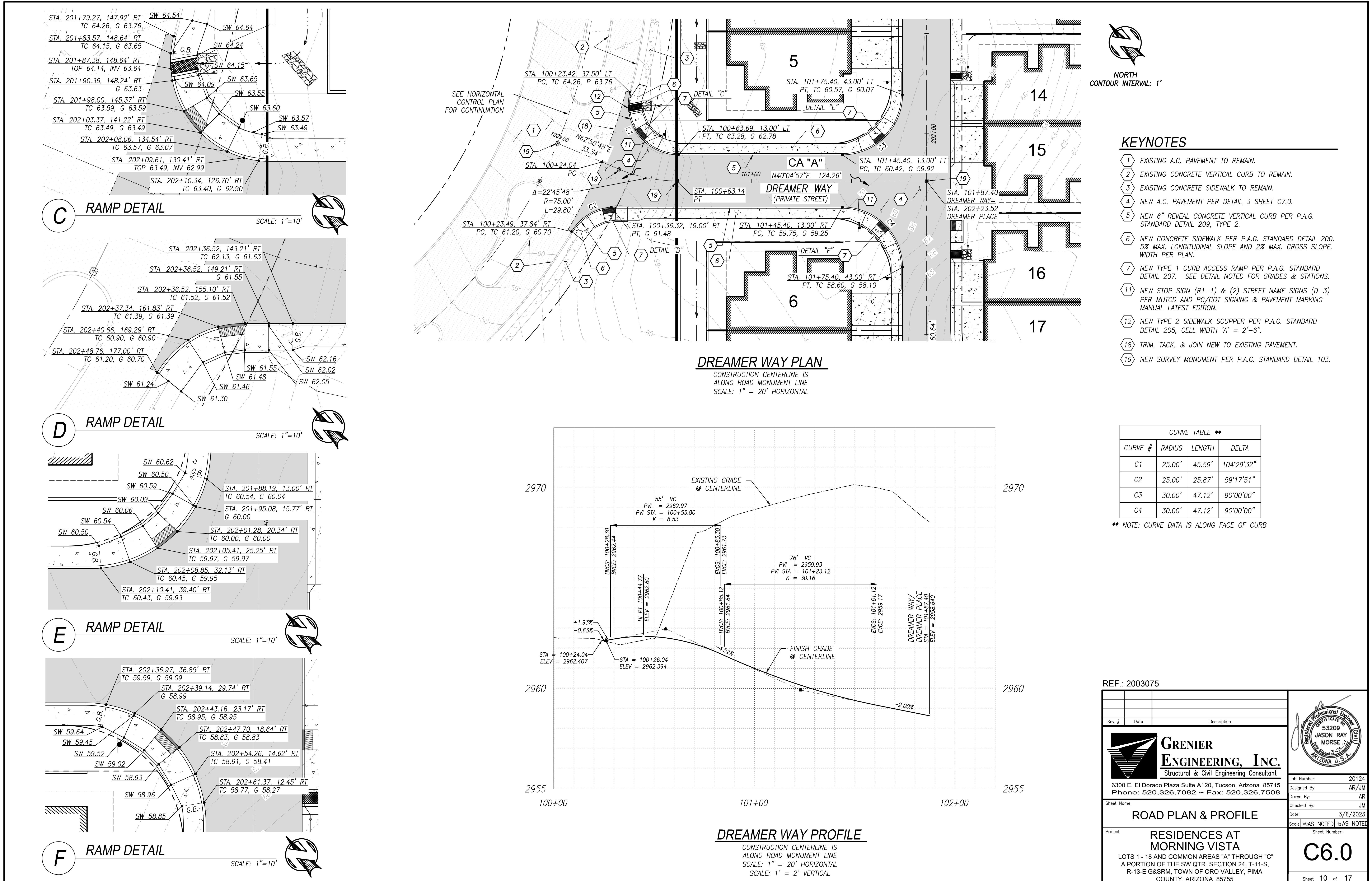


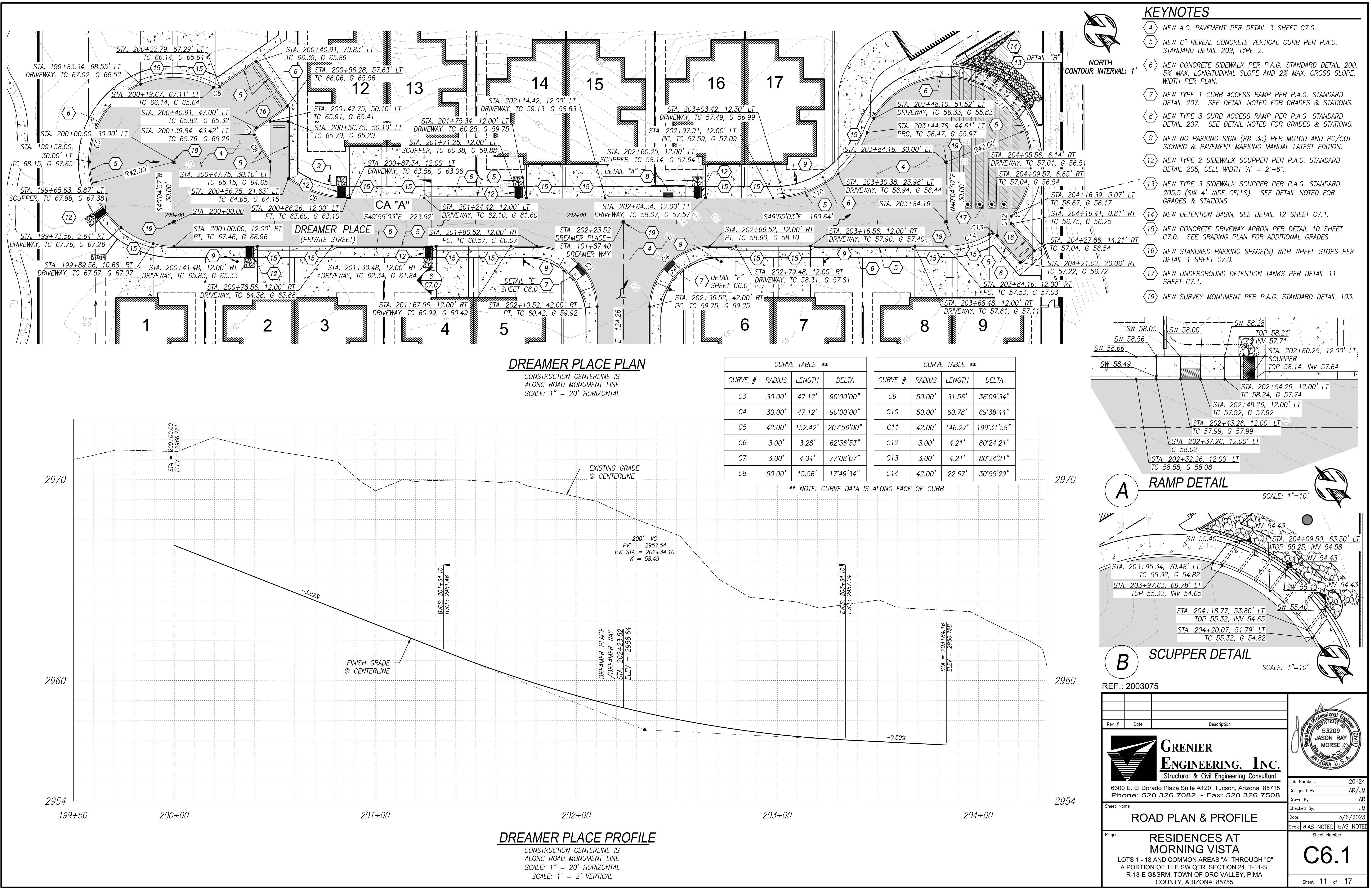

### SEWER PROFILE 1

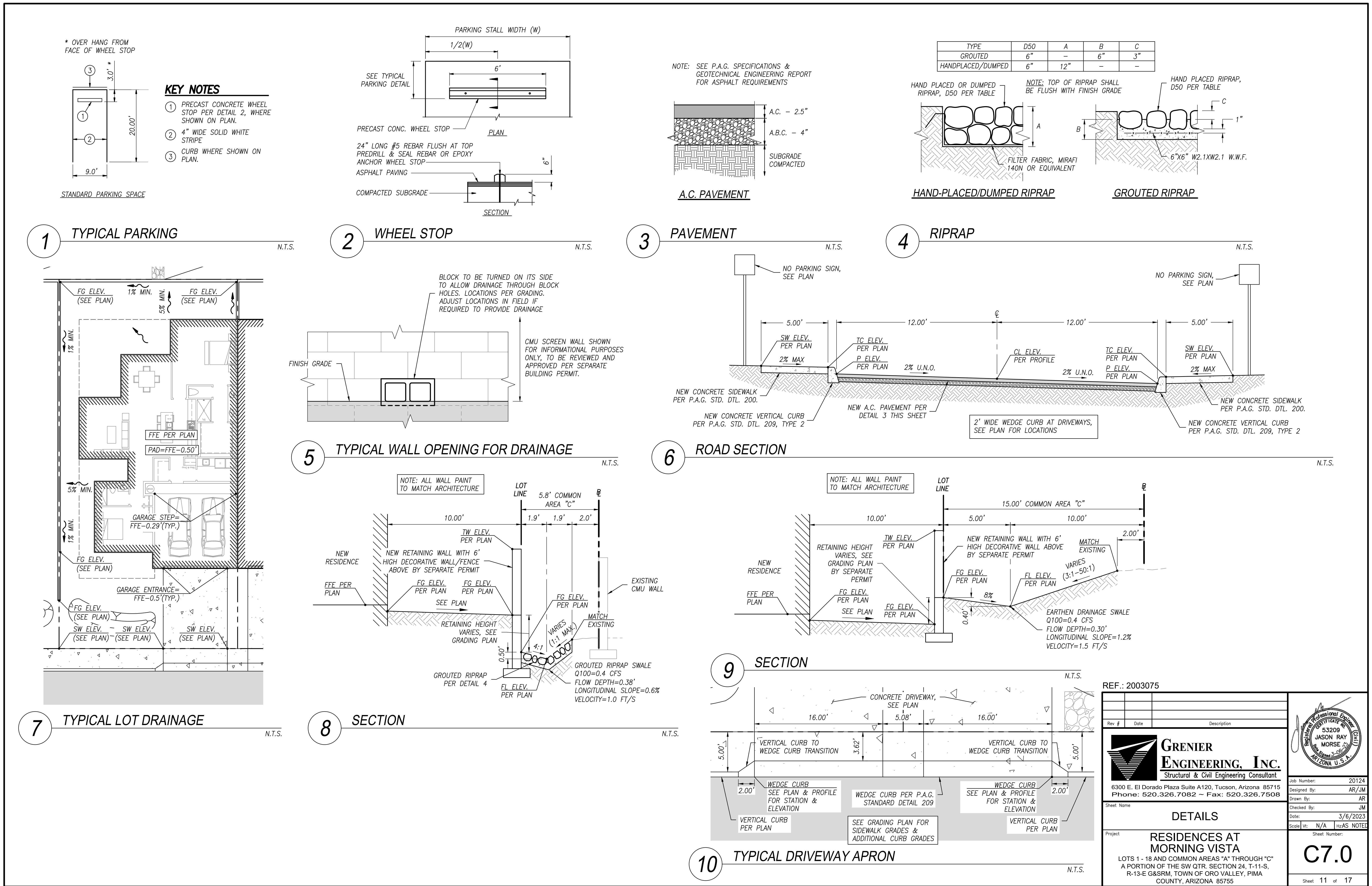
STATIONING IS ALONG PIPE CENTERLINE  
SCALE: 1"=20' HORIZONTAL  
SCALE: 1"=2' VERTICAL

PUBLIC AND PRIVATE SEWER MANHOLES  
AND MAINS ARE BY SEPARATE PERMIT  
AND ARE SHOWN FOR REFERENCE ONLY.  
SEE PUBLIC AND PRIVATE SEWER PLANS  
FOR FINAL CONSTRUCTION DOCUMENTS



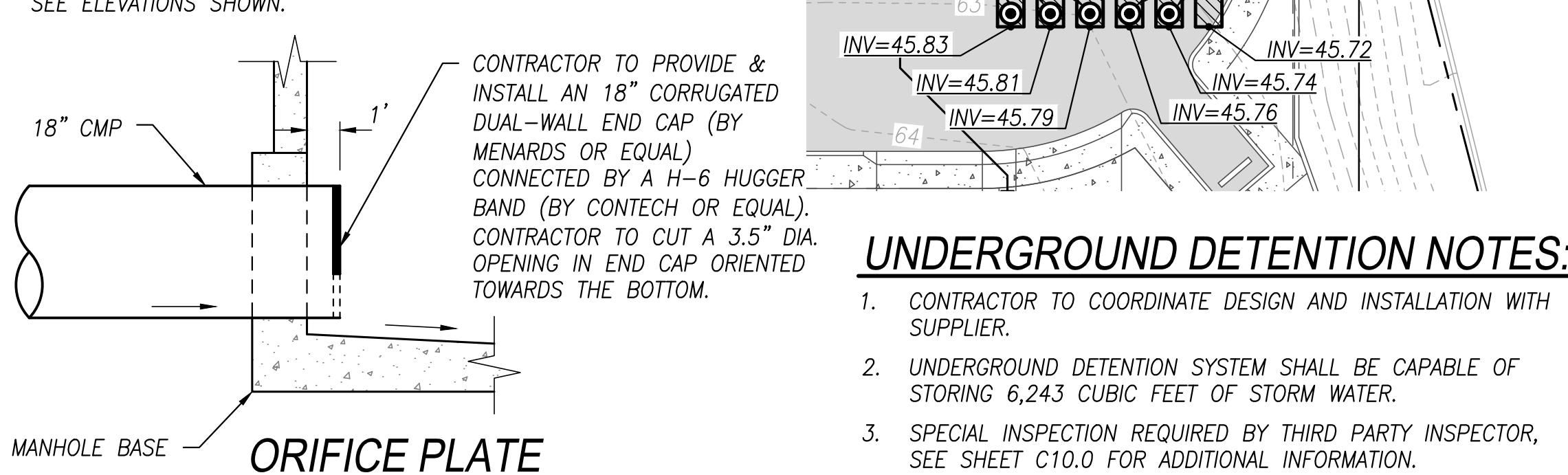

### SEWER PROFILE 3


STATIONING IS ALONG PIPE CENTERLINE  
SCALE: 1"=20' HORIZONTAL  
SCALE: 1"=2' VERTICAL


REF.: 2003075

| Rev #                                                                                                                                                                                                                                          | Date | Description |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|
|  <b>GRENIER<br/>ENGINEERING, INC.</b><br>Structural & Civil Engineering Consultant                                                                        |      |             |
| 6300 E. El Dorado Plaza Suite A120, Tucson, Arizona 85715<br>Phone: 520.326.7082 ~ Fax: 520.326.7508                                                                                                                                           |      |             |
| Job Number: 20124<br>Designed By: AR/JM<br>Drawn By: AR                                                                                                                                                                                        |      |             |
| Sheet Name<br>Checked By: JM<br>Date: 3/6/2023<br>Scale Vt: N/A HAZ AS NOTED                                                                                                                                                                   |      |             |
| Project: RESIDENCES AT MORNING VISTA<br>Lots 1 - 18 AND COMMON AREAS "A" THROUGH "C"<br>A PORTION OF THE SW QTR. SECTION 24, T-11-S,<br>R-13-E G&SRM, TOWN OF ORO VALLEY, PIMA<br>COUNTY, ARIZONA 85755<br>Sheet Number: C5.1<br>Sheet 9 of 17 |      |             |

THIS DRAWING IS NOT TO BE USED FOR CONSTRUCTION PURPOSES UNTIL SEALED AND SIGNED BY ENGINEER OF RECORD. REUSE OR REPRODUCTION WITHOUT WRITTEN PERMISSION IS PROHIBITED.

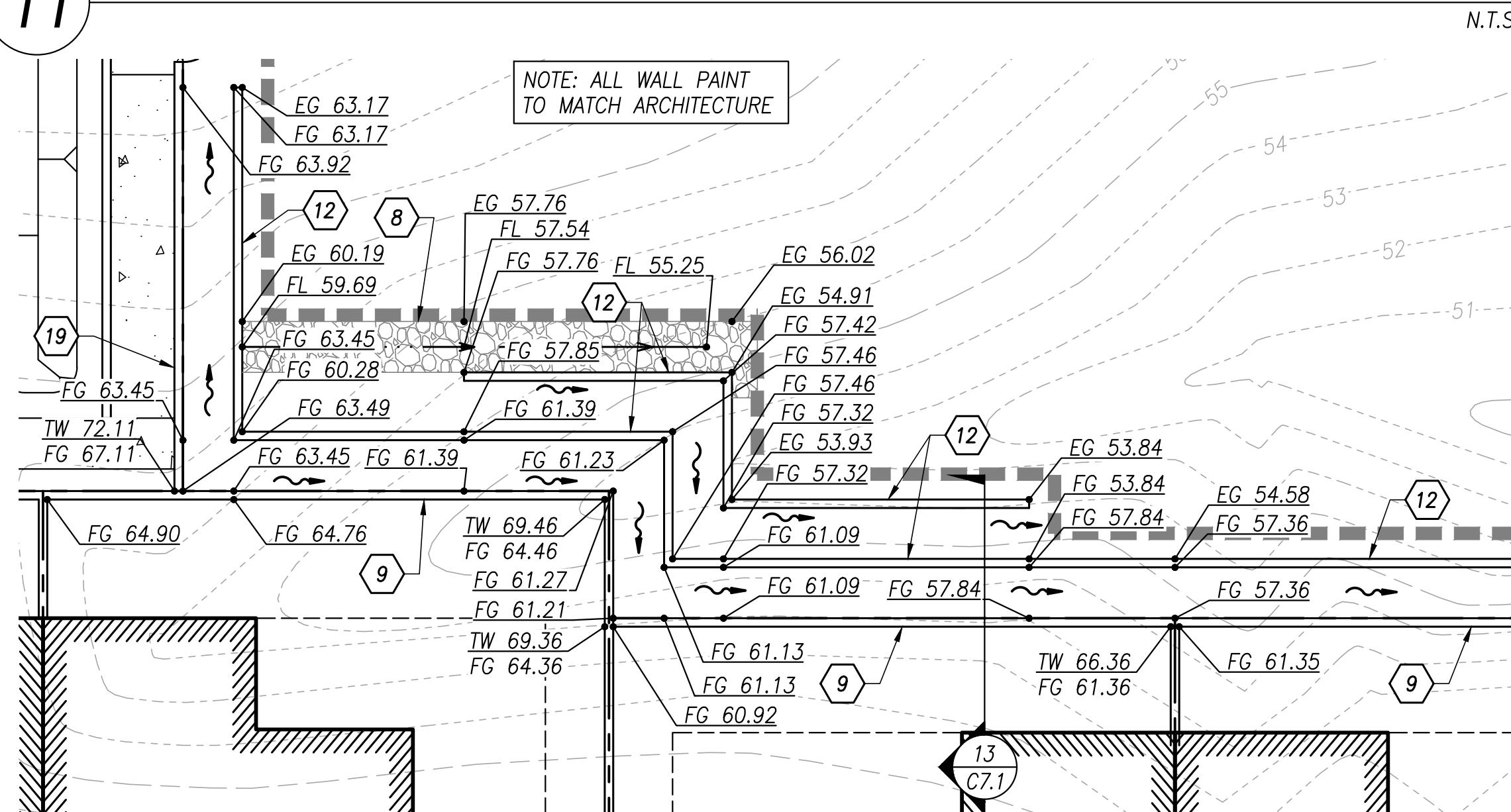




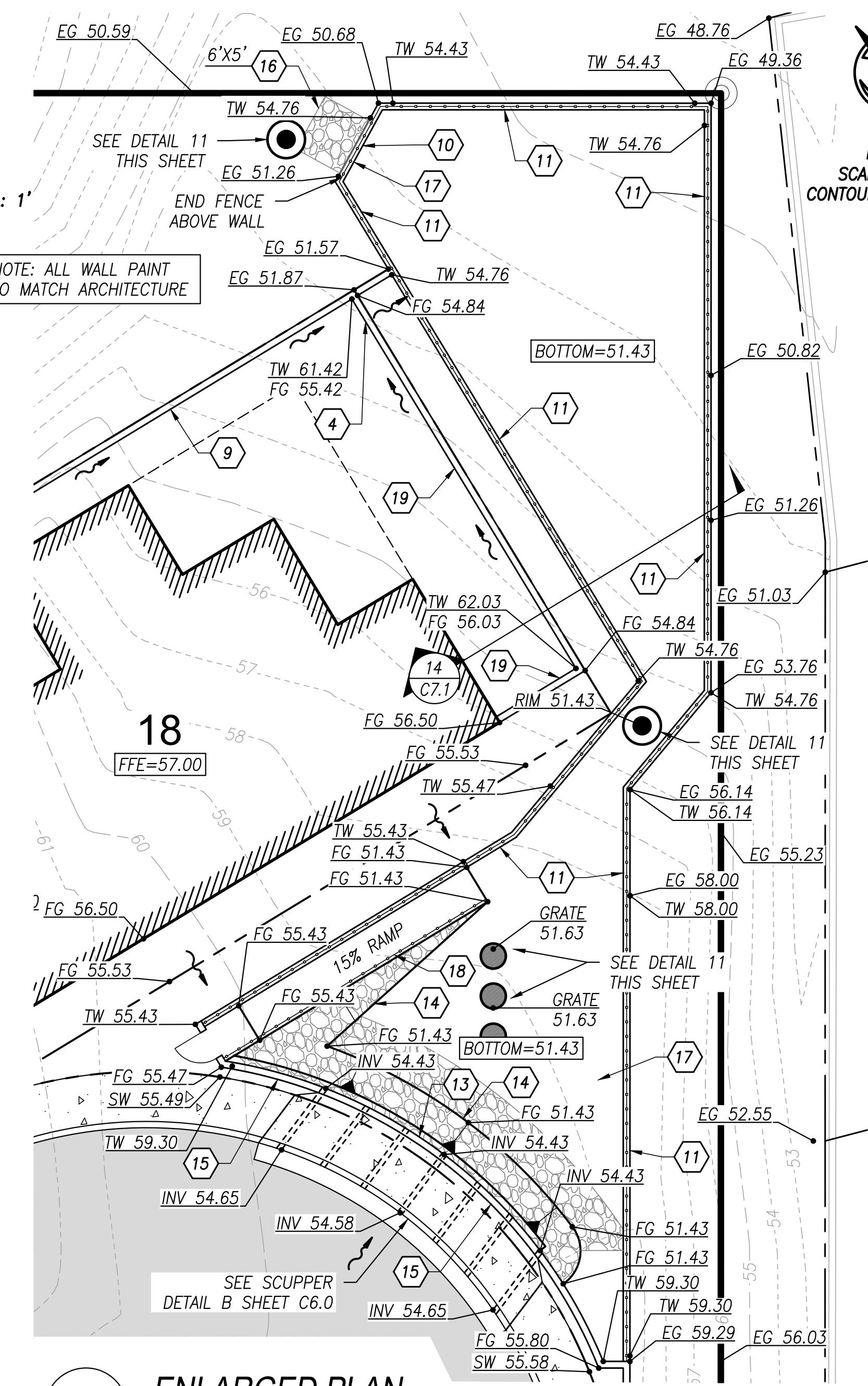



## KEYNOTES

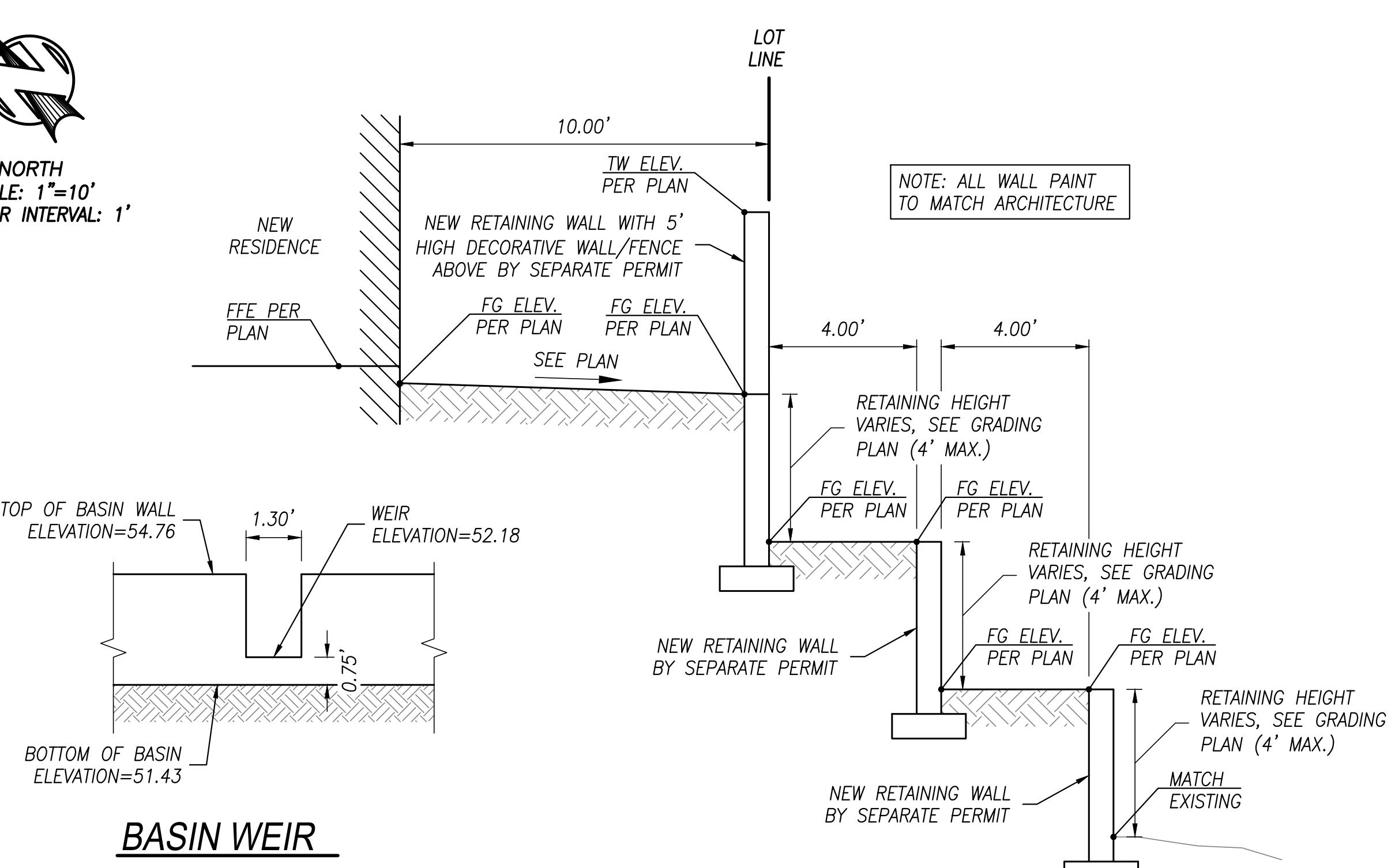
- 1 NEW UNDERGROUND 48" CMP DETENTION SYSTEM (497 L.F., 6,243 C.F.) BY CONTECH OR APPROVED EQUAL. SEE UNDERGROUND DETENTION NOTE THIS SHEET.
- 2 NEW 18" CMP (SMOOTH INTERIOR) BLEEDER PIPE, LENGTH & SLOPE AS NOTED.
- 3 NEW STORM DRAIN MANHOLE PER P.A.G. STANDARD DETAIL 302. INSTALL WATERTIGHT FRAME AND COVER.
- 4 WALL OPENING PER DETAIL 5 SHEET C7.0.
- 5 NEW ACCESS MANHOLE WITH 30" DIA. FRAME & SOLID LID PER TANK MANUFACTURER, SEE SHEET C10.0.
- 6 INSTALL ORIFICE PLATE AT END OF PIPE PER DETAIL BELOW.
- 7 NEW 30" DIA. FRAME & GRATE PER TANK MANUFACTURER, SEE SHEET C10.0. TOP OF GRATE TO BE SET 0.2' ABOVE BOTTOM OF BASIN.
- 8 NEW RIPRAP SWALE PER DETAIL 16 THIS SHEET.
- 9 NEW RETAINING WALL WITH 5' HIGH DECORATIVE WALL/FENCE ABOVE BY SEPARATE PERMIT. RETAINING HEIGHT BELOW SCREEN WALL VARIES, SEE ELEVATIONS SHOWN.
- 10 NEW WEIR PER DETAIL ON THIS SHEET.
- 11 NEW DETENTION BASIN RETAINING WALL WITH 42" HIGH WROUGHT IRON FENCE ABOVE.
- 12 NEW RETAINING WALL BY SEPARATE PERMIT.
- 13 PROVIDE WALL OPENING FOR FULL WIDTH OF SCUPPER CELLS.
- 14 NEW GROUTED RIPRAP SLOPE (1:1) PER DETAIL 4 SHEET C7.0.
- 15 NEW RETAINING WALL WITH 3'-6" HIGH DECORATIVE WALL/FENCE ABOVE BY SEPARATE PERMIT. RETAINING HEIGHT BELOW SCREEN WALL VARIES, SEE ELEVATIONS SHOWN.
- 16 NEW RIPRAP PAD PER DETAIL 4 SHEET C7.0 AND DIMENSIONS NOTED.
- 17 NEW GRADUATED MARKER OR STORY POLL WITH 0.1' INCREMENTS. INSTALL PER MANUFACTURER SPECIFICATIONS.
- 18 NEW 42" HIGH WROUGHT IRON FENCE ALONG EDGE OF RAMP BY SEPARATE PERMIT.
- 19 NEW RETAINING WALL WITH 6' HIGH DECORATIVE WALL/FENCE ABOVE BY SEPARATE PERMIT. RETAINING HEIGHT BELOW SCREEN WALL VARIES, SEE ELEVATIONS SHOWN.



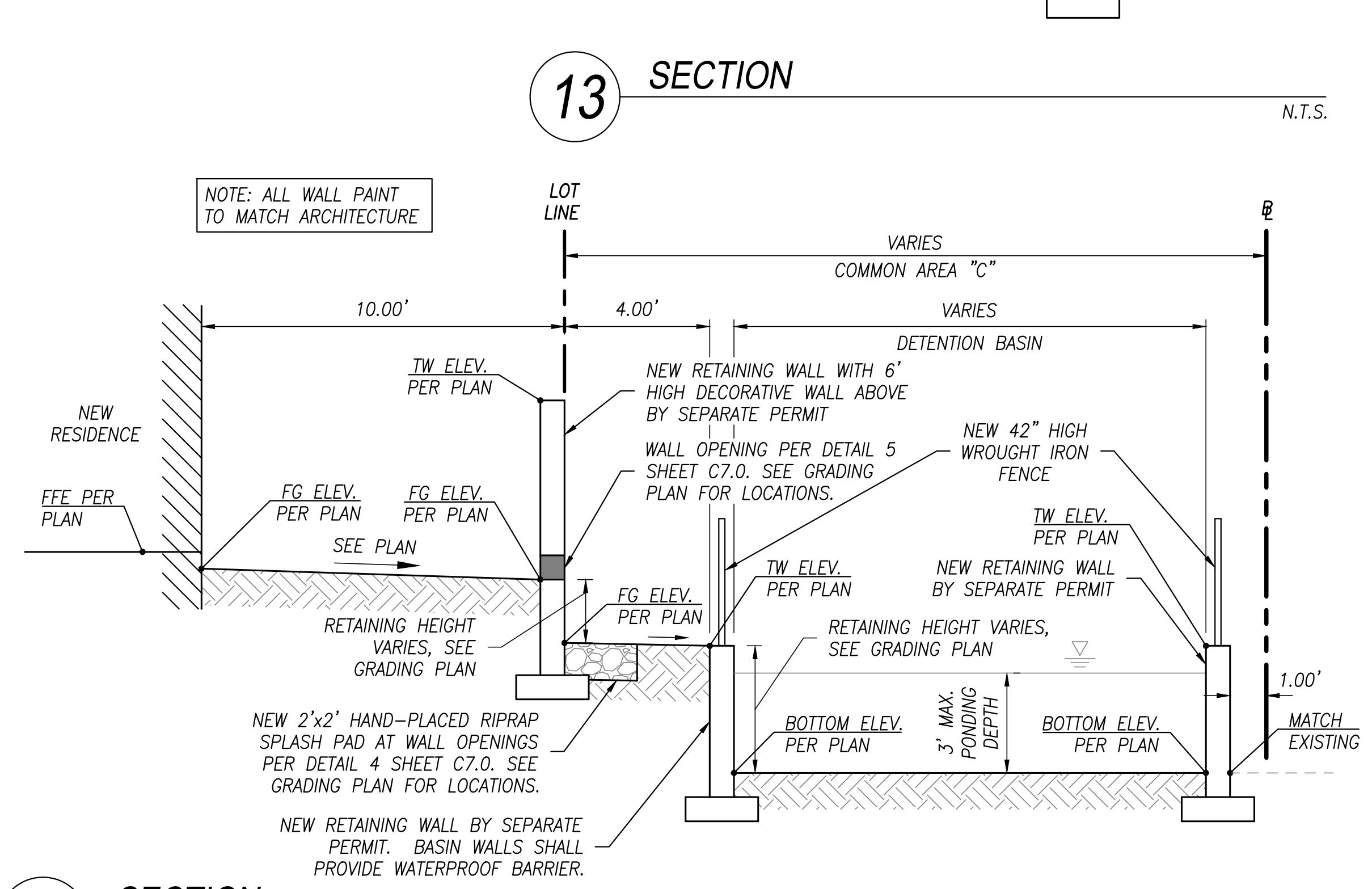

# UNDERGROUND DETENTION NOTES:


---

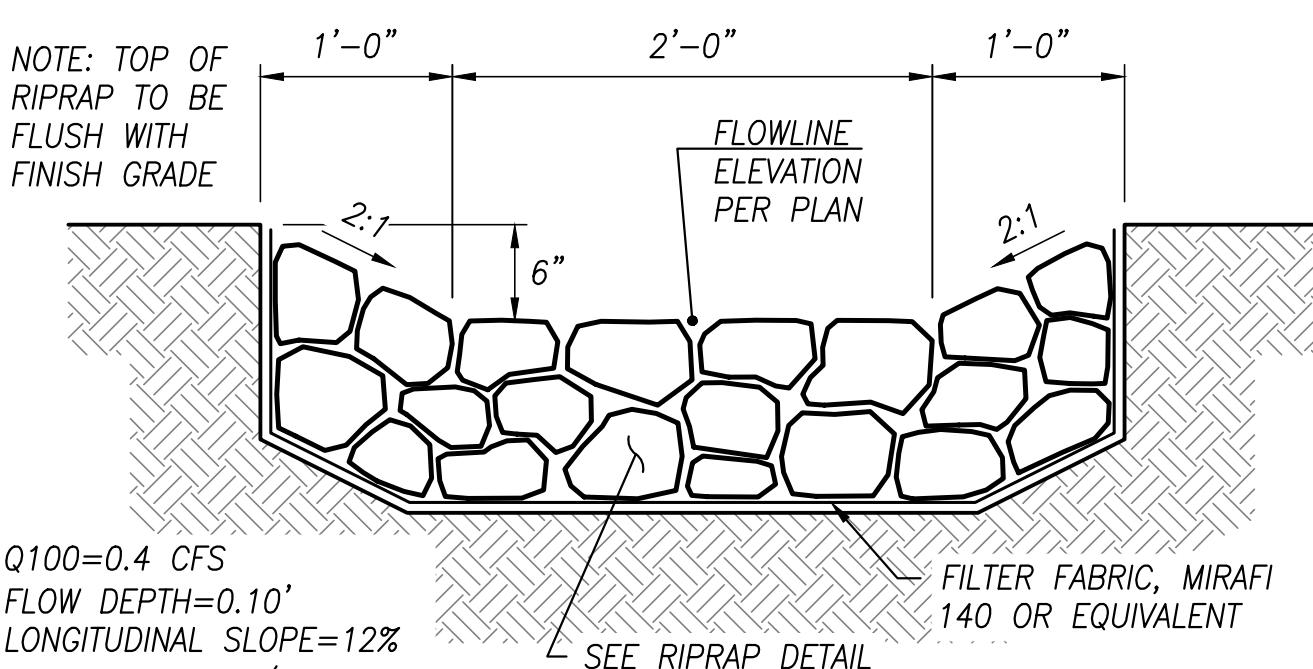
1. CONTRACTOR TO COORDINATE DESIGN AND INSTALLATION WITH SUPPLIER.
2. UNDERGROUND DETENTION SYSTEM SHALL BE CAPABLE OF STORING 6,243 CUBIC FEET OF STORM WATER.
3. SPECIAL INSPECTION REQUIRED BY THIRD PARTY INSPECTOR, SFF SHEET C10.0 FOR ADDITIONAL INFORMATION.


# UNDERGROUND DETENTION

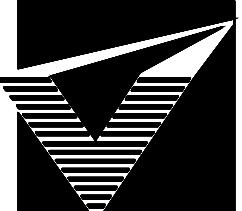


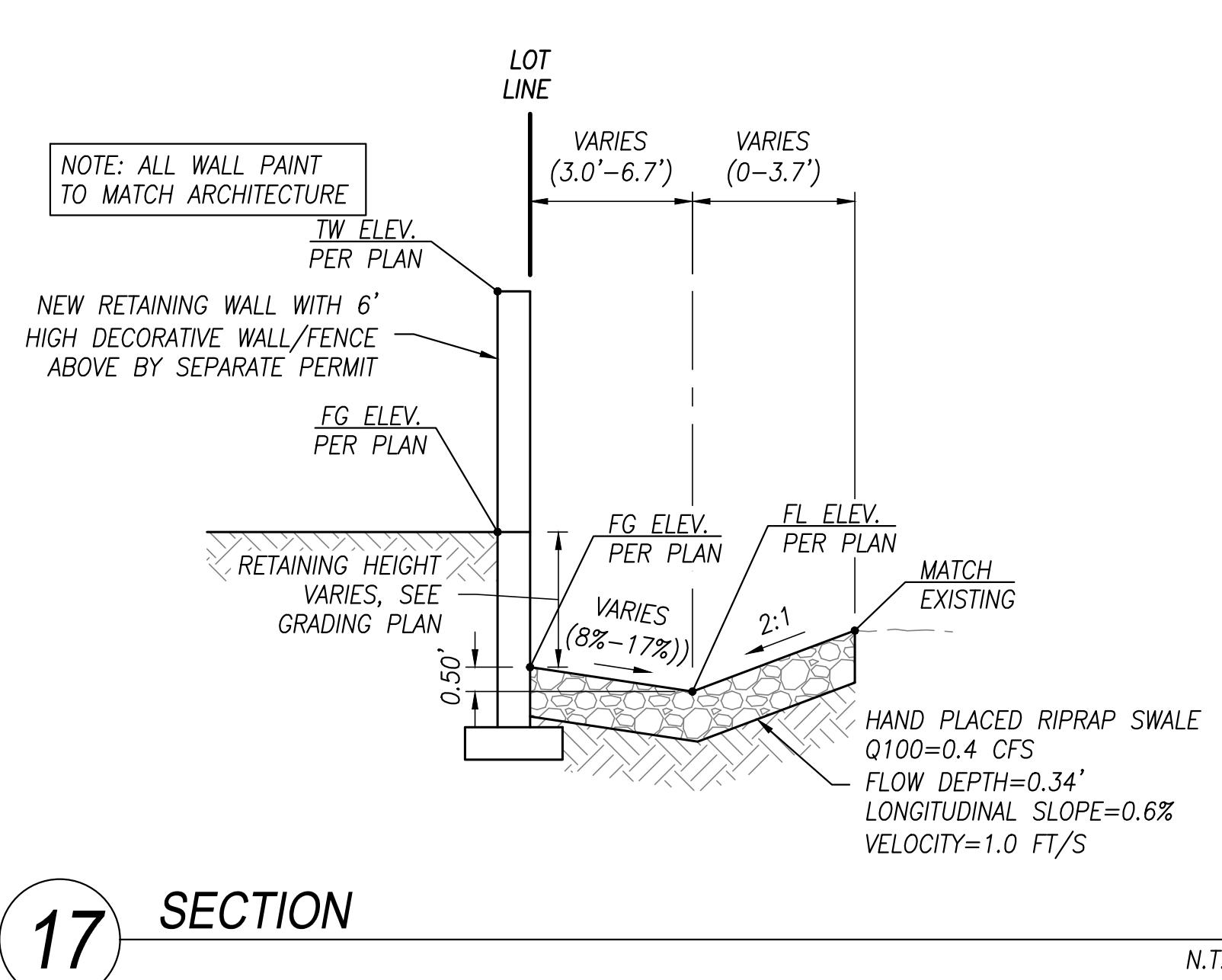

**15 ENLARGED PLAN**




## 12 ENLARGED PLAN

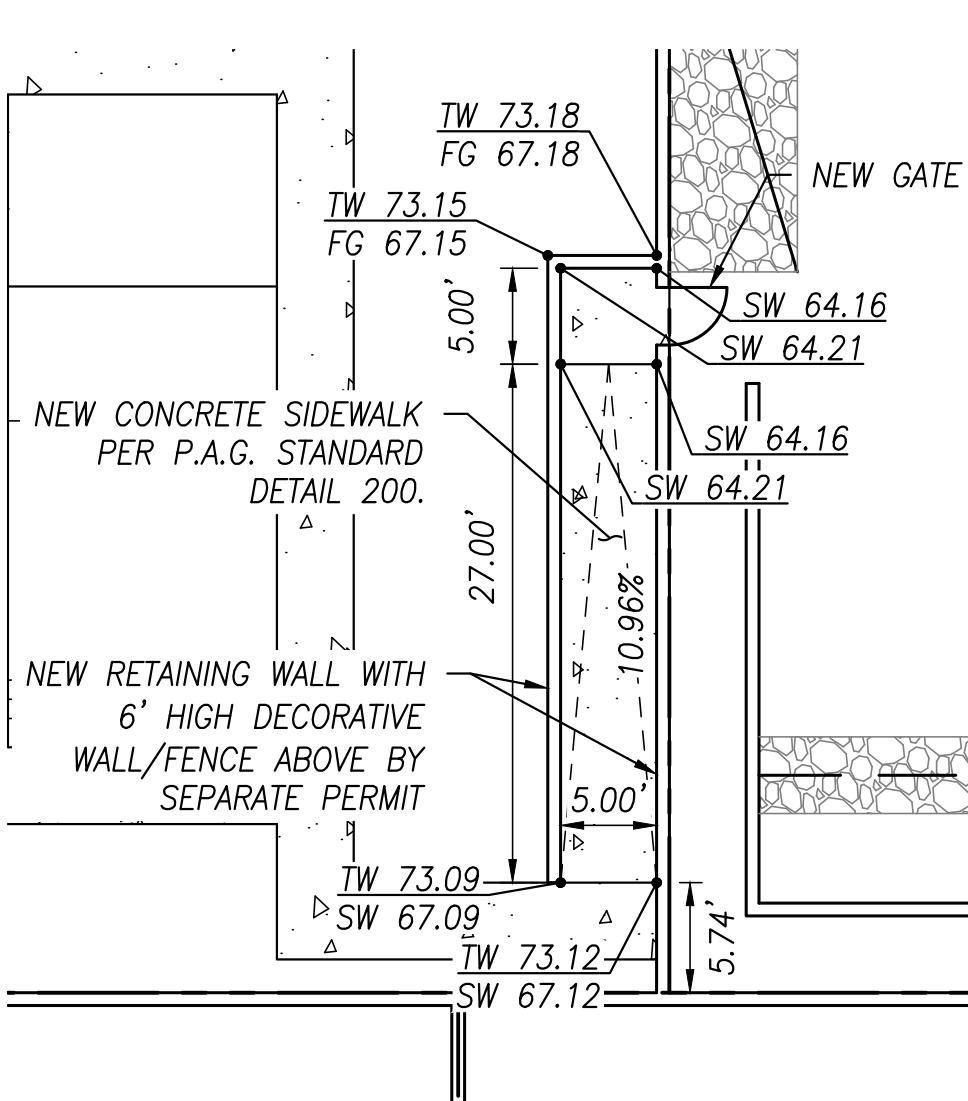



## *BASIN WEIR*



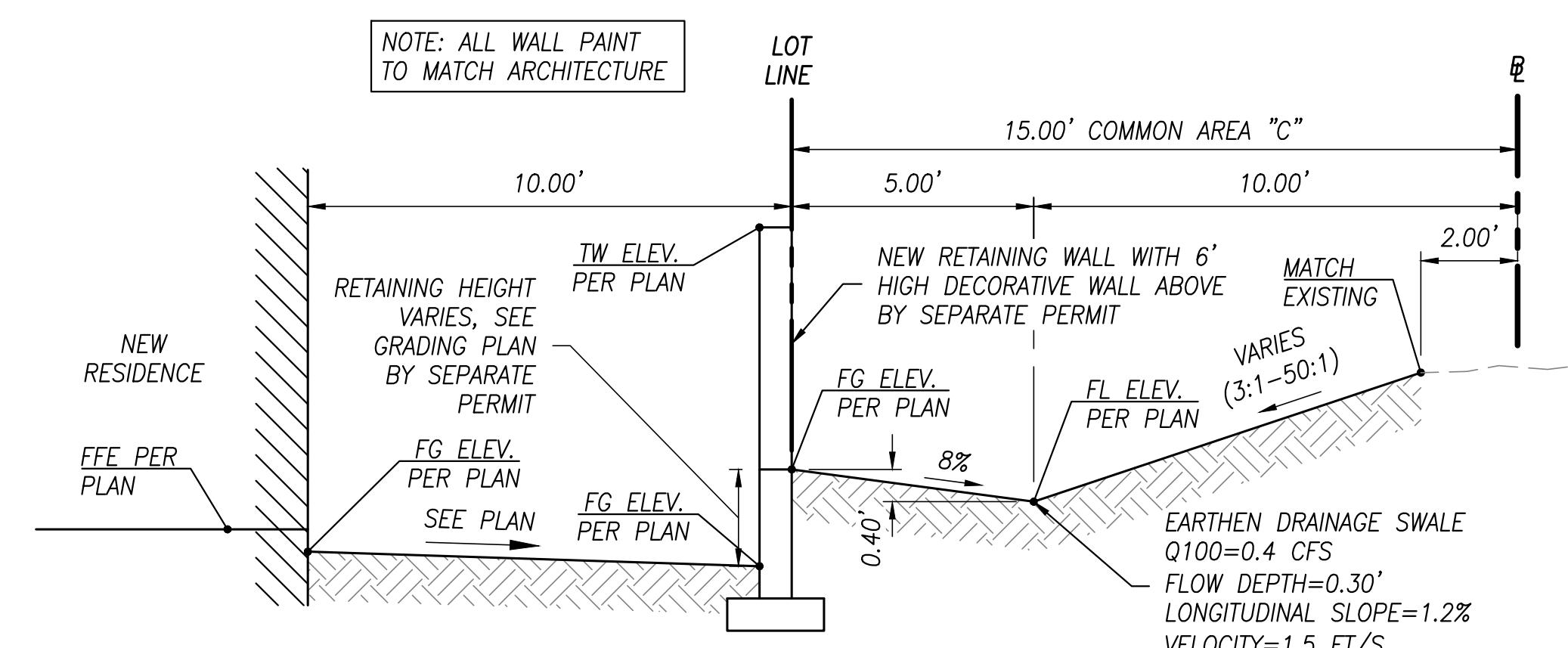

## SECTION




## 16 RIPRAP SWALE

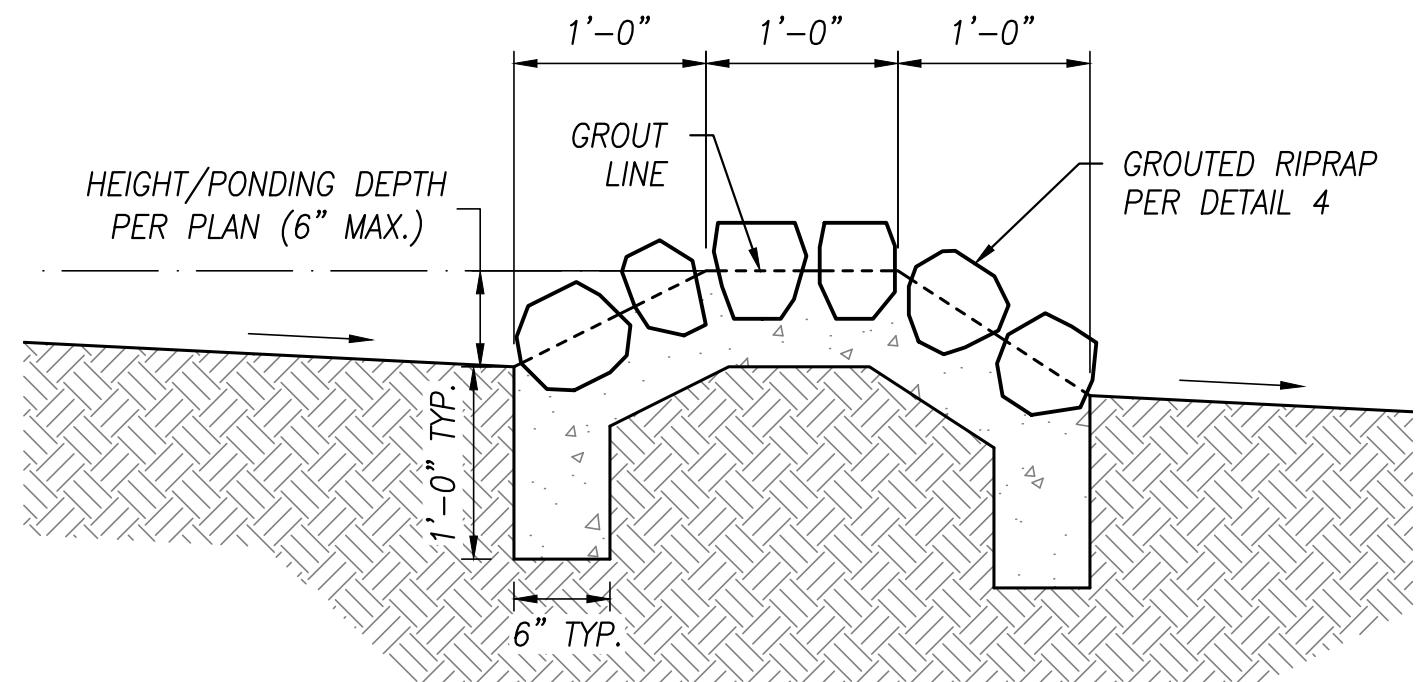
|                                                                                                                                                                                                                                                                                                         |      |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|
| REF.: 2003075                                                                                                                                                                                                                                                                                           |      |             |
| Rev #                                                                                                                                                                                                                                                                                                   | Date | Description |
|  <p><b>GRENIER</b><br/><b>ENGINEERING, INC.</b><br/>Structural &amp; Civil Engineering Consultant</p> <p>6300 E. El Dorado Plaza Suite A120, Tucson, Arizona 85715<br/>Phone: 520.326.7082 ~ Fax: 520.326.7508</p> |      |             |
| <p>Sheet Name: <b>DETAILS</b></p> <p>Project: <b>RESIDENCES AT MORNING VISTA</b></p> <p>LOTS 1 - 18 AND COMMON AREAS "A" THROUGH "C"<br/>A PORTION OF THE SW QTR. SECTION 24, T-11-S,<br/>R-13-E G&amp;SRM, TOWN OF ORO VALLEY, PIMA<br/>COUNTY, ARIZONA 85755</p>                                      |      |             |
|  <p>Job Number: 20124</p> <p>Designed By: AR/JM</p> <p>Drawn By: AR</p> <p>Checked By: JM</p> <p>Date: 3/6/2023</p> <p>Scale: N/A Vt: Hz AS NOTED</p> <p>Sheet Number: C7.1</p>                                    |      |             |
| <p>Sheet 12 of 17</p>                                                                                                                                                                                                                                                                                   |      |             |




# SECTION 17

N.T.




## 18 MAINTENANCE RAMP

N.



# SECTION 19

N.T.S.



## 20 CHECK DAM

---

N T

REF.: 2003075

REF.. 2005075

| Rev # | Date | Description |
|-------|------|-------------|
|       |      |             |
|       |      |             |
|       |      |             |
|       |      |             |

# GRENIER ENGINEERING, INC.

Structural & Civil Engineering Consultant

6300 E. El Dorado Plaza Suite A120, Tucson, Arizona 85715  
**Phone:** 520.326.7082 ~ **Fax:** 520.326.7508

Sheet Name

## DETAILS

Project

### RESIDENCES AT MORNING VISTA

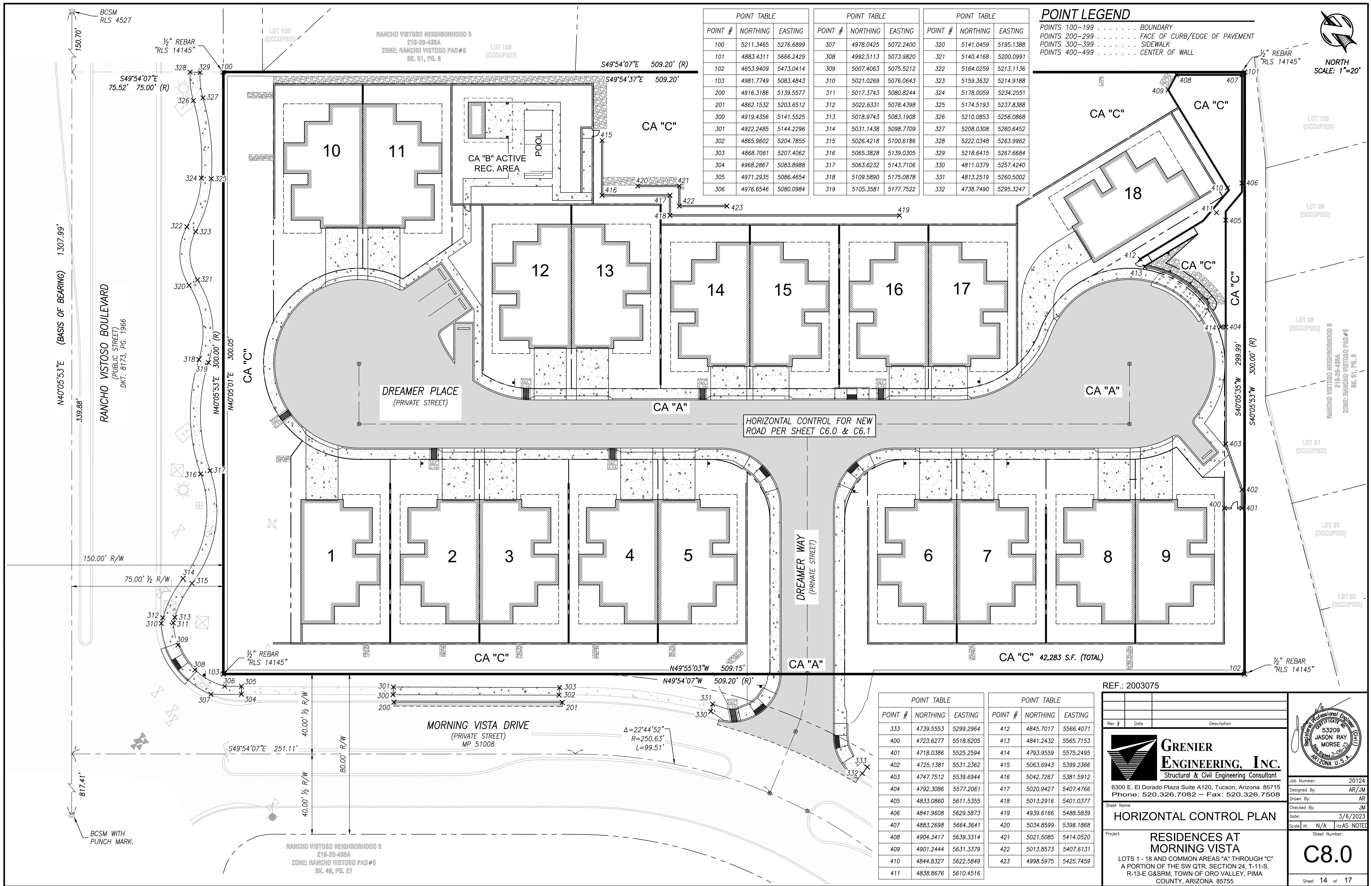
LOTS 1 - 18 AND COMMON AREAS "A" THROUGH "C"  
 A PORTION OF THE SW QTR. SECTION 24, T-11-S,  
 R-13-E G&SRM, TOWN OF ORO VALLEY, PIMA  
 COUNTY, ARIZONA 85755

Job Number: 2012

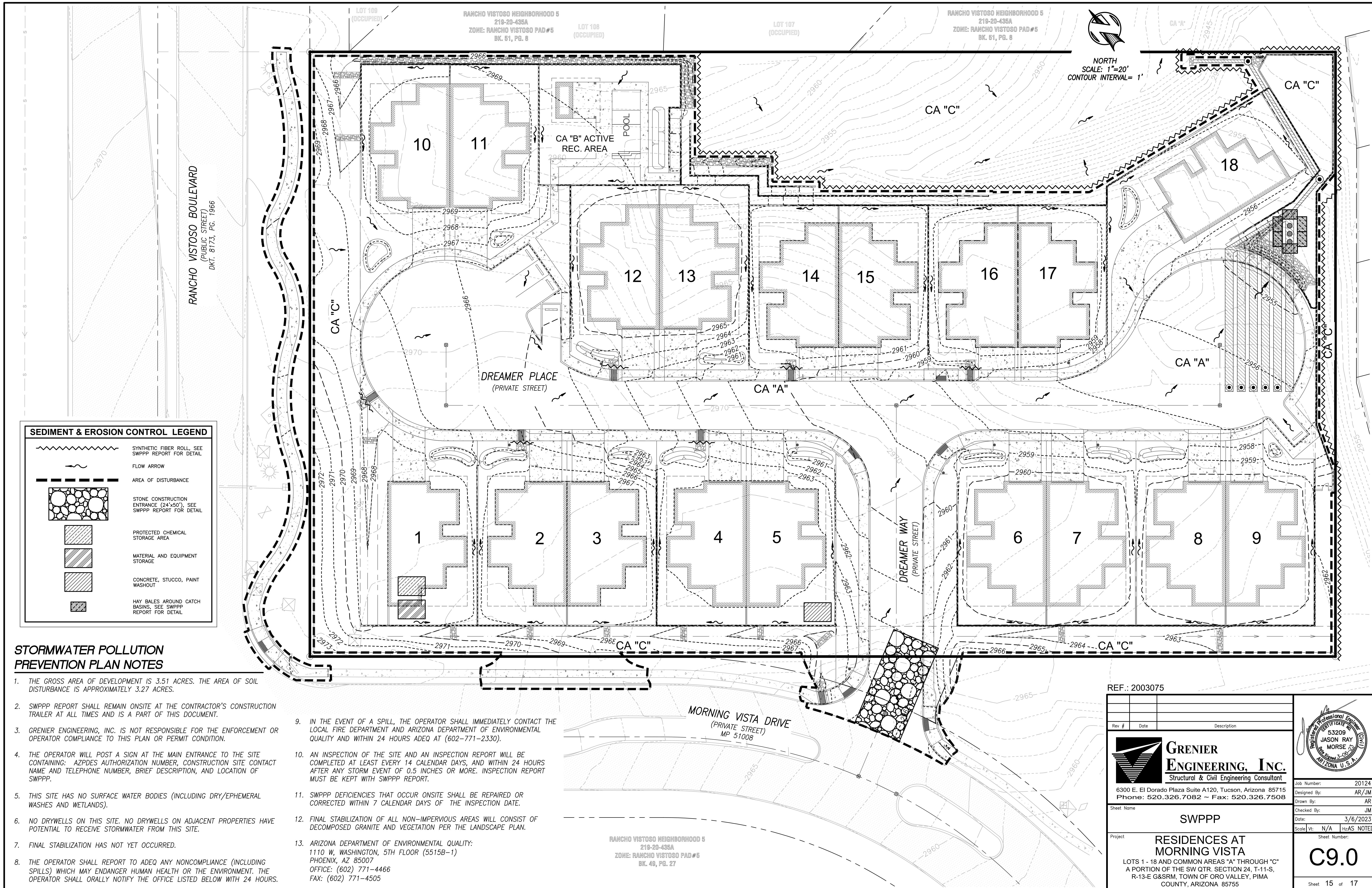
Designed By: AR/JM

Drawn By: AP

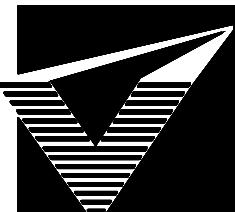
Checked By: JM

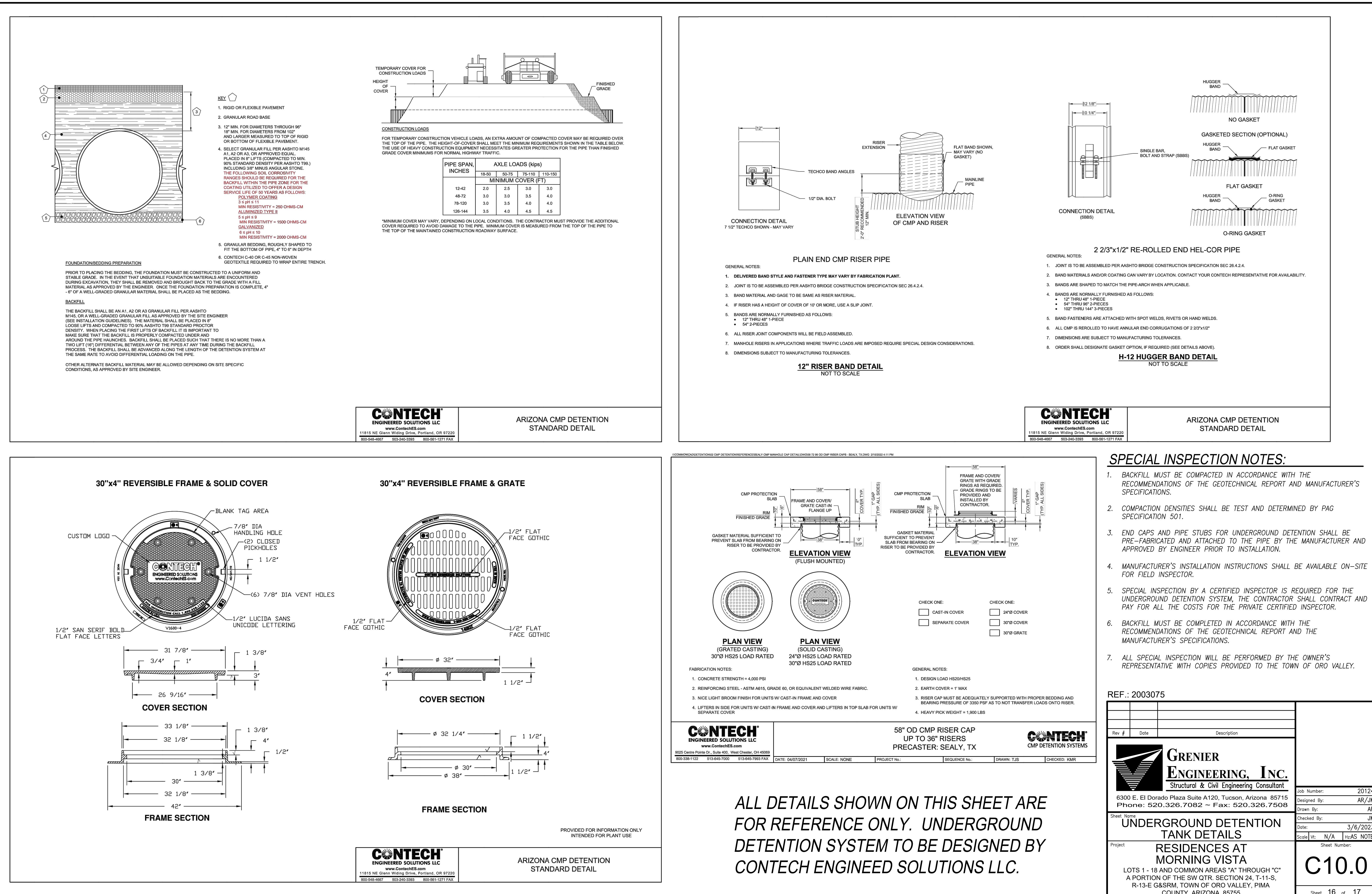

Date: 3/6/2023

Scale: Vt: N/A Hz/AS NOTE


Sheet Number:

# C7.2


Sheet 13 of 17




THIS DRAWING IS NOT TO BE USED FOR CONSTRUCTION PURPOSES UNTIL SEALED AND SIGNED BY ENGINEER OF RECORD. REUSE OR REPRODUCTION WITHOUT WRITTEN PERMISSION IS PROHIBITED.



RANCHO VISTOSO NEIGHBORHOOD 5  
219-20-435A  
ZONE: RANCHO VISTOSO PAD #5  
BK. 49, PG. 27

| Rev #                                                                                                                                                                                                                                                                                                                           | Date | Description |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|
|  <p><b>GRENIER</b><br/> <b>ENGINEERING, INC.</b><br/> <u>Structural &amp; Civil Engineering Consultant</u></p> <p>6300 E. El Dorado Plaza Suite A120, Tucson, Arizona 85715<br/> <b>Phone:</b> 520.326.7082 ~ <b>Fax:</b> 520.326.7508</p> |      |             |
| <p>Sheet Name: <b>SWPPP</b></p> <p>Project: <b>RESIDENCES AT MORNING VISTA</b></p> <p>LOTS 1 - 18 AND COMMON AREAS "A" THROUGH "C"<br/> A PORTION OF THE SW QTR. SECTION 24, T-11-S,<br/> R-13-E G&amp;SRM, TOWN OF ORO VALLEY, PIMA<br/> COUNTY, ARIZONA 85755</p>                                                             |      |             |
| <p>Job Number: <b>20124</b></p> <p>Designed By: <b>AR/JM</b></p> <p>Drawn By: <b>AR</b></p> <p>Checked By: <b>JM</b></p> <p>Date: <b>3/6/2023</b></p> <p>Scale: <b>N/A</b> Hz: <b>AS NOTED</b></p> <p>Sheet Number: <b>C9.0</b></p>                                                                                             |      |             |
| <p>Sheet <b>15</b> of <b>17</b></p>                                                                                                                                                                                                                                                                                             |      |             |

